2017

Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih

Kristen A. Butela

Susan M. R. Gurney

Heather L. Hendrickson

Janine M. LeBlanc-Straceski
Merrimack College, leblancstraj@merrimack.edu

Anastasia M. Zimmerman

See next page for additional authors

Follow this and additional works at: https://scholarworks.merrimack.edu/bio_facpubs

Part of the Genomics Commons

Repository Citation

This Article - Open Access is brought to you for free and open access by the Biology at Merrimack ScholarWorks. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Merrimack ScholarWorks.
Authors

This article - open access is available at Merrimack ScholarWorks: https://scholarworks.merrimack.edu/bio_facpubs/26
Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih


Division of Natural and Health Sciences, Seton Hill University, Greensburg, Pennsylvania, USAa; Department of Biology, Drexel University, Philadelphia, Pennsylvania, USAb; Institute of Natural and Mathematical Sciences, Massey Phage Whaunau, Massey University, Auckland, New Zealandc; Department of Biology, Merrimack College, North Andover, Massachusetts, USA;d; Department of Biology, College of Charleston, Charleston, South Carolina, USA;e; Biology Department, College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan, USAf; Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, Michigan, USAf; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USAh; Biology Department, James Madison University, Harrisonburg, Virginia, USAa

Mycobacterium smegmatis mc²155 is a well-characterized actinobacterium that is used as a host for bacteriophage discovery (1). There are currently over 1,300 completely sequenced mycobacteriophages that have been discovered by participants in the Howard Hughes Medical Institute Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program (2, 3). These phages are considerably diverse, forming 24 clusters (clusters A to Z) and six singletons (those without close relatives). Cluster A is the largest cluster, with over 500 individual phage members, and it is subdivided into multiple subclusters based on overall sequence relationships (4, 5).

Seven mycobacteriophages were isolated from soil or compost samples using either enrichment culture or direct plating with the bacterial host M. smegmatis mc²155 at 26 to 37°C. All seven phages are morphologically members of the family Siphoviridae. The genomes were sequenced using the Illumina MiSeq platform with 150-bp reads and assembled using Newbler and Consed, with at least 300-fold coverage (6, 7).
genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), Glimmer (8), GeneMark (9), Starterator, Phamerator (10), HHpred (11), BLASTp searches against the NCBI nonredundant and actinobacteriophage (http://phagesdb.org) databases (12, 13), Aragorn (14), tRNAscanSE (15), and PECAAN (http://pecaan.kbrinsgd.org). Phage features are listed in Table 1.

All of the genomes are approximately 50 kb long and have nucleotide sequence similarities to those of cluster A phages. BobSwaget and Lokk are grouped into subcluster A2, and Fred313, KADY, Stagni, and StepMih are grouped into subcluster A3, according to their nucleotide sequence similarities. MyraDee is not closely related to phages in any particular subcluster and thus is the founding member of subcluster A18. We note that although Stagni and StepMih were isolated from geographically distinct locations, they share 99.8% nucleotide identity over their genome length. All of the phages have a typical cluster A genome organization, with the virion structure and assembly genes in their left arm and regulatory and replication functions in their right arm (16). However, they differ in the number and types of tRNA genes near their left genome end; Kady, Stagni, and StepMih have three tRNA genes (tRNAAsn, tRNALeu, and tRNATrp), Fred313 has two (tRNAAsn, tRNATrp), BobSwaget and Lokk have one (tRNAAsn), and MyraDee has none.

All seven phages have features consistent with temperate lifestyles and encode putative immunity repressors related to L5 gp71 (17). However, they differ in the genes near the centers of the genomes that confer prophage maintenance. For example, Fred313, Stagni, and StepMih code for integrases of the tyrosine recombinase family, whereas KADY and MyraDee code for serine integrases (18). In contrast, BobSwaget and Lokk have parABS partitioning systems, as described for several other cluster A phages (19, 20), although their ParA and ParB proteins share only 62% and 48% amino acid sequence identities, respectively. Lokk, but not BobSwaget, codes for a putative RepA protein (gp36) that is implicated in extrachromosomal prophage replication and that shares 71% amino acid identity with phage CRB1 RepA (20). MyraDee codes for a putative ArdA-like antirestriction protein (gp87).

Accession number(s). The genome sequences reported here have been deposited in GenBank under the accession numbers given in Table 1. The versions described here for these phages are the first versions reported.

ACKNOWLEDGMENTS

Merrimack College SEA-PHAGES student contributors are listed at https://seaphages.org/media/GA_authors/GA4_9-18-17.pdf. We acknowledge Jung Min, Elizabeth Moak, and Alka Suresh for contributions to discovery and annotation.

This work was supported by the Howard Hughes Medical Institute (HHMI) SEA-PHAGES program and HHMI grant 54308198 to G.F.H. Support was also provided by NIH grants UL1GM118982, TL4GM118983, and RL5GM118981 to the University of Detroit Mercy ReBUIlDDetroit program.

REFERENCES

3. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, Den-


