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Right-hand polarized 4f ce auroral roar emissions:
2. Nonlinear generation theory

P. H. Yoon1,2, J. LaBelle3, and A. T. Weatherwax4

1Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA, 2School of Space
Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do, Korea, 3Department of Physics and Astronomy, Dartmouth
College, Hanover, New Hampshire, USA, 4School of Science and Engineering, Merrimack College, North Andover,
Massachusetts, USA

Abstract Auroral roar emissions are commonly interpreted as Z (or upper hybrid) mode naturally excited
by precipitating auroral electrons. Subsequent conversion to escaping radiation makes it possible for
these emissions to be detected on the ground. Most emissions are detected as having left-hand (L) circular
(or ordinary O) polarization, but the companion paper presents a systematic experimental study on the
rare occurrence of the right-hand polarized, or equivalently, extraordinary (X) mode 4fce emission. A similar
observation was reported earlier by Sato et al. (2015). The suggested emission mechanism is the nonlinear
coalescence of two upper hybrid roars at 2fce. The present paper formulates a detailed theory for such an
emission mechanism.

1. Introduction

The auroral roar emission is a megahertz range narrowband radiation detected on the ground in the Earth’s
auroral zone. The auroral roar was first discovered at 2fce [Kellogg and Monson, 1979], where fce = Ωe∕(2𝜋)
stands for electron cyclotron frequency and Ωe = eB0∕mec being the angular electron gyrofrequency. Here e,
B0, me, and c stand for unit electric charge, ambient magnetic field intensity, electron mass, and the speed of
light, respectively. Subsequently, 3fce roar was discovered [Weatherwax et al., 1993]. The general understand-
ing of the emission mechanism is based on the relativistic cyclotron maser type of resonant instability of Z
mode waves excited by the precipitating auroral electrons possessing a horseshoe (or generalized loss cone)
momentum distribution function [Yoon et al., 1998]. The Z or upper hybrid wave growth is enhanced when
the local upper hybrid frequency matches twice or thrice the local electron cyclotron frequency, fuh ≈ nfce, for
n = 2, 3, a condition that can be satisfied near the F region peak ionospheric altitude at nighttime. Here the
upper hybrid frequency fuh is defined by f 2

uh = f 2
ce + f 2

pe, where fpe = 𝜔pe∕(2𝜋) is the electron plasma frequency
and 𝜔pe = (4𝜋n0e2∕me)1∕2 is the angular frequency. The quantity n0 represents the ambient electron density.

The ground-level detection of the auroral roar is believed to be the result of mode conversion of upper
hybrid/Z mode to left-hand/O mode at the density gradient. Indeed, the measured polarization of 2fce and
3fce is consistent with this interpretation in that the L-O mode polarization is dominant for these emissions
[Shepherd et al., 1997; Sato et al., 2008]. Recently, 4fce [Sato et al., 2012] and 5fce [LaBelle, 2012; LaBelle and
Dundek, 2015] auroral roars have also been detected near the sunlit side of the ionosphere where the electron
density is enhanced via photoionization.

In a recent paper, Sato et al. [2015] reported the first polarization measurements of 4fce auroral roars. According
to their study, while the majority of 4fce roars detected under the sunlit condition are polarized in the sense
of left-hand/O mode, thus supporting the direct linear mode conversion paradigm, a couple of intriguing
right-hand/X mode polarized 4fce roars under darkness was also observed. The authors suggest that these
roars are the consequence of two upper hybrid or Z mode roars at 2fce nonlinearly coupling to produce the
X mode at twice their frequencies. Sato et al. [2010] also proposed the same mechanism to interpret the
anomalous polarization from the topside ionosphere.

A companion paper [LaBelle and Chen, 2016] reports the result of a systematic study at Sondrestrom,
Greenland, of all 4fce auroral roar emissions detected by a dedicated experiment designed for optimal sensi-
tivity to higher harmonic emissions including polarization measurements. The details of experiment can be
found in that paper, but to summarize the findings, the occurrence of 4fce roar emissions increases under sunlit
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conditions, but every single observation is left-hand polarized. Rare 4fce roars with opposite polarization
(right-hand/X mode) are detected during nighttime, which is consistent with the earlier report by Sato et al.
[2015] and suggests the rarity of right-hand polarized (or X mode) 4fce roars. It also points to the fact that
the emission mechanism for right-hand/X mode 4fce roars must be fundamentally different than the custom-
ary left-hand/O mode polarized roars. In agreement with Sato et al.’s suggestion, we also believe that the
most plausible mechanism is the merging of two 2fce roars. The purpose of the present Letter is to quanti-
tatively analyze the nonlinear coalescence emission process by making use of the recently formulated weak
turbulence theory for perpendicular propagation [Yoon, 2015].

The nonlinear theory of two upper hybrid waves merging to generate the X mode radiation actually has
been entertained in a variety of contexts before. Vlahos et al. [1983] considered such a mechanism for
solar microwave bursts. They assumed coherent three-wave interaction, whereas the wave kinetic equation
formulated by Yoon [2015] is applicable for an incoherent (i.e., broadband in k space) turbulence. Fung
and Papadopoulos [1987] also considered a similar coherent wave-wave interaction problem to discuss the
narrowband Jovian kilometric radiation. Roux and Pellat [1979], on the other hand, considered the weak tur-
bulence theory similar to ours, except that their theory is approximate and qualitative. Their theory was an
early attempt to explain the auroral kilometric radiation. The works most closely related to the present Letter
are those by Melrose [1991] and by Willes et al. [1998]. Melrose [1991] worked out a model of Z mode waves
undergoing multiple nonlinear coalescence to produce multiple cyclotron harmonic solar spike radio bursts.
His theory was adopted by Willes et al. [1998] in the context of the auroral roar emission, but Willes et al. [1998]
were concerned with explaining 2fce and 3fce roars. Because the observed polarization of 2fce and 3fce roars
is polarized predominantly in the sense of left-hand/O mode, their Z mode coalescence theory, which pre-
dicts right-hand/X mode polarization, did not attract much attention. However, in view of Sato et al.’s and
LaBelle et al.’s observation of 4fce right-hand/X mode roars, albeit rare in occurrence, it is timely to revisit this
mechanism. In the present paper, we make use of recent theory [Yoon, 2015] in order to demonstrate that the
coalescence of two 2fce upper hybrid/Z mode roars is indeed possible. In the remainder of the present paper
we discuss the details of our findings.

2. Nonlinear Theory of 4fce Roar

To briefly overview the recent formulation of nonlinear kinetic theory of high-frequency incoherent electro-
magnetic (EM) perturbations, Yoon [2015] considered that the wave vector is assumed to lie in an orthogonal
direction, k = kx̂, with respect to the ambient magnetic field, B0 = B0ẑ. With such a simplification, the Vlasov
equation was solved in a perturbative way up to the second order in nonlinearity. The nonlinear current is
obtained in terms of multiple harmonic series involving the customary Bessel function expansion, which is
common to the kinetic theory of magnetized plasmas. By restricting the discussion to magnetoionic modes
(i.e., cold-plasma waves) propagating in perpendicular directions, namely, the ordinary EM wave, and two
branches (X and Z) of the extraordinary mode wave, Yoon [2015] derived the wave kinetic equation. Yoon’s for-
mulation of weak turbulence theory, which is based upon the statistical mechanical approach, is equivalent
to the formalism based upon the semi-classical method, as found, e.g., in the paper by Melrose [1991].

In the cold limit, it was found that O mode does not respond to nonlinear perturbation such that it decouples
from X and Z modes and thus remains in a plane wave state. However, it was also found that X and Z modes
are mutually coupled through nonlinear susceptibility response, and the wave kinetic equations for the two
modes are given by
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(1)

where 𝛼 = X, Z and 𝜎 = ±1 signify the direction of wave vector along x axis. The wave electric field inten-
sity, I𝜎

𝛼
(k), for each eigenmode, X or Z, is related to the total spectral wave electric field energy density by
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|E(k)|2 =
∑

𝛼=X,Z

∑
𝜎=±1 I𝜎𝛼k 𝛿

(
𝜔 − 𝜎𝜔𝛼

k

)
. Here the linear dispersion relations for X and Z modes are given,

respectively, by 𝜔 = 𝜔X
k and 𝜔 = 𝜔Z

k , where(
𝜔2
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𝜔2

Z
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=
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4
+ c2k2. (2)

In the above, 𝜔2
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e + 4𝜔2
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(6)

The detailed derivation of the above result can be found in the paper by Yoon [2015].

In what follows, let us consider the situation in which the ratio 𝜔pe∕Ωe is on the order of
√

3 or so, which is
the optimal condition for excitation of 2fce upper hybrid/Z mode. Anticipating the final result that the gen-
eration of X mode by nonlinear coalescence of two Z modes will occur only over a narrow frequency band
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around twice the upper hybrid frequency, we may approximate 𝜔X ≈ 2𝜔uh in the nonlinear mode coupling
coefficients, a, b, and c, as well as in the factor Λ′. To good approximation, we may also write 𝜔Z ≈ 𝜔uh. We
assume that the wave intensities are symmetric in k so that they do not depend on the index 𝜎. Also, we
may choose only +1 signs for the indices 𝜎, 𝜎′, and 𝜎′′. We assume that the waves are symmetric in k, so we
may simply choose 𝜎 = 1 without loss of generality (𝜎 = ±1 represents the direction of wave propagation
along k axis). For 𝜎 = 1 and positive real frequencies, only 𝜎′ = 𝜎′′ = 1 can satisfy the resonance condition,
𝜎𝜔𝛼

k = 𝜎′𝜔
𝛽

k′
+ 𝜎′′𝜔

𝛾

k−k′
. Let us also consider a simple situation where the X mode intensity is sufficiently low

so that it may be ignored on the right-hand side of equation (1). This approximation leads to substantial sim-
plification of the nonlinear mode coupling coefficients as well as the nonlinear wave kinetic equation. After
some manipulations, one can show that the wave kinetic equation for the X mode is approximately given by

𝜕IX (k)
𝜕t

= A∫ dk′Vk,k′ IZ(k′)IZ(k − k′)𝛿(𝜔X
k − 𝜔Z
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k−k′ ), (7)

where

A = 𝜋e2
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e
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1
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×

(
1

(𝜔Z
k′
)2 − 𝜔2

uh

+ 1
(𝜔Z
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)2 − 𝜔2
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)(∑
+,−

6𝜔3
uh ± Ωe𝜔

2
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)
.

(8)

In equation (8) the delta-function resonance condition must be computed numerically since closed-form
analytical determination of the resonant k′ is not forthcoming.

In order to facilitate the analysis, let us introduce dimensionless variables and quantities,

𝜛 = 𝜔

Ωe
, 𝜅 = ck

Ωe
, 𝜌 =

𝜔pe

Ωe
,(𝜅) = Ω3

e

c3
I(k). (9)

In terms of the above dimensionless quantities, let us also write down the models of X and Z mode dispersion
relations,

𝜛X (𝜅) =
√

𝜛2
R + 𝜅2,

𝜛Z(𝜅) =
𝜛L + C𝜛uh𝜅

2

1 + C𝜅2
,

(10)

where 𝜛uh = (1 + 𝜌2)1∕2 is the normalized upper hybrid frequency, 𝜛R = (1∕2)[(1 + 4𝜌2)1∕2 + 1]
and 𝜛L = (1∕2)[(1 + 4𝜌2)1∕2 − 1] stand for normalized R and L mode cutoff frequencies, respectively,
C = (𝜛∗−𝜛L)∕(𝜛uh−𝜛∗), and𝜛∗ = (𝜛2

uh−𝜌)1∕2. Note that model dispersion relations (10) replace the actual
dispersion relations (2), but numerical plots of the two formulae show good agreement (not shown). The rea-
son for adopting the model dispersion relations is that they facilitate the numerical root finding scheme in
the delta-function resonance condition. In terms of equation (10), the delta-function three-wave resonance
condition becomes

0 = 𝜛X (𝜅) −𝜛Z(𝜅′) −𝜛Z(𝜅 − 𝜅′) =
√

𝜛2
R + 𝜅2 −

𝜛L + C𝜛uh𝜅
′2

1 + C𝜅′2
−

𝜛L + C𝜛uh(𝜅 − 𝜅′)2

1 + C(𝜅 − 𝜅′)2
. (11)

It turns out that the real root 𝜅′ for the above equation exists for 𝜅 in the approximate range 2.5 < 𝜅 < 3.8 or
so. Upon close examination, this range of 𝜅 corresponds to 4fce frequency, which shows that the merging of
two upper hybrid/Z modes near 2fce is indeed capable of generating X mode at 4fce. The range of real roots
𝜅′ when 𝜅 is limited to the said wave number domain turns out to be roughly 2 < 𝜅′ < 8. For such a range of
𝜅′, the Z modes 𝜛Z(𝜅′) and 𝜛Z(𝜅 − 𝜅′) are characterized by short perpendicular wavelengths such that their
frequency is close to the upper hybrid frequency.

In what follows, we simply model the Z mode intensity as a symmetric Gaussian spectrum,

Z(𝜅) = 0

[
e−(𝜅−𝜅0)2∕Δ2 + e−(𝜅+𝜅0)2∕Δ2

]
, (12)
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Figure 1. The normalized X mode nonlinear growth rate Γ(𝜅) = Γ(𝜛)
versus 𝜛 =

√
𝜛R + 𝜅2 for 𝜌 =

√
3, 𝜅0 = 4 and Δ = 1.

where 𝜅0 and Δ are chosen as 𝜅0 = 4
and Δ = 1. We also choose 𝜌 ∼

√
3,

which is close to the optimal condition
for the matching of upper hybrid fre-
quency and twice the electron cyclotron
frequency, fuh = 2fce (or 𝜔uh = 2Ωe).
With the above model spectrum for Z
mode and the adopted frequency ratio,
we define the instantaneous normal-
ized decay instability growth rate for X
mode,

ΓX (𝜅) ≡ 1
Ωe

𝜕

𝜕t

X (𝜅)
2

0

=
Γ0

2
0

G(𝜅)Z(𝜅r)Z(𝜅 − 𝜅r),

(13)
where

Γ0 = 𝜋

8
𝜌8

𝜛2
uh

𝜅2

(4𝜛4
uh − 𝜌4 + 2𝜛2

uh𝜅
2)2

(
6𝜛3

uh + 𝜌2

(2𝜛uh − 1)(𝜛uh − 1)
+

6𝜛3
uh − 𝜌2

(2𝜛uh + 1)(𝜛uh + 1)
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(14)

In the above, 𝜅r is the real root of equation (11) determined by a numerical root solving scheme.

Shown in Figure 1 is the normalized X mode nonlinear growth rate Γ(𝜅) = Γ(𝜛) versus 𝜛 =
√
𝜛R + 𝜅2.

As Figure 1 indicates, the X mode growth rate is peaked around the frequency range slightly below 4fce in a
narrow range occupying frequency bandwidth ∼ 0.1Ωe. This proves that the suggested emission mechanism
of two 2fce roars merging to produce 4fce X mode roar [Sato et al., 2010; 2015] may indeed be correct. Note
that the normalized nonlinear growth rate depends on a number of unknown quantities such as the Z mode
intensities, etc., so that it is difficult to extract actual physical quantities, such as the nonlinear growth time, on
the basis of the formal expression. The real purpose is to show the gross property associated with the decay
instability that 4fce wave growth does indeed take place.

3. Conclusions and Discussion

In the present paper, a nonlinear decay instability theory for the recently observed 4fce auroral roar with
right-hand/X mode polarization [Sato et al., 2015; LaBelle and Chen, 2016] is formulated and solved in detail. It
is demonstrated that indeed, the upper hybrid/Z mode with twice the electron cyclotron frequency is capable
of coalescing in order to produce the fourth-harmonic right-hand/X mode roars.

The Dartmouth College research team have recently completed a survey of all the 4fce roars observed at
Sondrestrom facility in which a polarization experiment was installed. The results are discussed in detail in
the companion paper [LaBelle and Chen, 2016], but briefly, they report that 4fce roars observed under sunlit
condition are all left-hand polarized (i.e., O mode), while a couple of 4fce roars at nighttime showed opposite
polarization. Such a rarity of right-hand polarized (X mode) 4fce roars is consistent with earlier observation
by Sato et al. [2015], who reported only two right-hand polarized 4fce’s from among 11 events. Note that the
Dartmouth research team detected many more events of 4fce roar emissions, yet only two under darkness
exhibited the X mode polarization.

In view of this, one may wonder why the nonlinear merging emission is so uncommon. In order to address this
issue, we have examined the critical role of input parameters for the nonlinear growth rate (13). There are three
basic free parameters. One is the frequency ratio, 𝜌 = 𝜔pe∕Ωe, but since this ratio determines the excitation of

2fce roars to start with, we do not have much freedom with this parameter. We chose 𝜌 = 𝜔pe∕Ωe ∼
√

3, which
is an optimal condition for 2fce upper hybrid excitation. Another parameter is 𝜅0 = ck0∕Ωe in equation (12),
which we chose as 𝜅0 = 4. The final one is the spectral width parameter Δ = c𝛿k∕Ωe. Of the latter two,
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Figure 2. The normalized X mode nonlinear growth rate
Γ(𝜅) = Γ(𝜛) versus 𝜛 =

√
𝜛R + 𝜅2 for 𝜌 =

√
3, 𝜅0 = 4 and for three

different values of spectral width parameter, Δ = 1, 0.9, and 0.8.

we find that the nonlinear growth rate Γx

(13) is very sensitive to the spectral width of
the two upper hybrid (or Z) modes, namely,
Δ = c𝛿k∕Ωe, but not on 𝜅0 = ck0∕Ωe. To
demonstrate the sensitive dependence of
Γx on Δ = c𝛿k∕Ωe, we plot in Figure 2 the
dimensionless nonlinear growth rate ΓX for
three different values of Δ. The first case
of Δ = 1 is the same as in Figure 1. As we
slightly reduce this parameter to Δ = 0.9,
one can see that the nonlinear growth
rate decreases substantially. For another
slight decrease, to Δ = 0.8, the growth rate
becomes very low in magnitude. This shows
that the nonlinear generation of 4fce emis-
sion may indeed be restricted by the
spectral property of the underlying 2fce

upper hybrid modes, especially their spec-
tral width in wave number space, which

cannot be completely understood unless one solves not only the entire weak turbulence equation (1) but
also the linear wave growth and damping equation. Such a task is the subject of future research.

From an observational point of view, although one does not measureΔ = c𝛿k∕Ωe directly, one may determine
the frequency bandwidth, 𝛿𝜔, by observation. If we approximately assume 𝜔 ∼ kve, where ve is the charac-
teristic speed for the electrons that interact to generate the upper hybrid waves, then we have 𝛿𝜔 ∼ 𝛿kve, or
combining with the definition, we have Δ = (𝛿𝜔∕Ωe)(c∕ve). From Figure 5 of the companion paper LaBelle
and Chen [2016], we have 𝛿f ∼ 0.1 MHz and fce ∼ 1.25 MHz, and so Δ> 1 (the condition for efficient non-
linear wave generation) requires ve < c∕12.5, implying E < 1.8 keV. This calculation is interesting because
there have been few previous estimates of the electron energies. Most estimates have suggested a somewhat
higher energy, e.g., ∼2.5–10 keV, based on in situ observations [Gough and Urban, 1983; Samara et al., 2004],
and previous theoretical work has assumed electron beams with those energies. Future more rigorous mod-
eling efforts based on the theory presented above will be valuable to place constraints on the energy of the
causative electron beam.

Some open theoretical questions and observational tests that remain outstanding are these: First, if 2fce

roars can merge to produce 4fce right-hand/X mode roars, then why are not most, if not all, of observed 2fce

roars accompanied by 4fce roars? Potential resolutions to this open question may be that the intensity of
2fce roars must be sufficiently high. If the intensity is not high enough, then the two induced decay terms
ignored in equation (1) may no longer be ignorable. If these terms have opposite sign, then the decay insta-
bility might be suppressed. The wave intensity is related to the electron energy, which is tentatively estimated
to be in the low keV range. A comprehensive theoretical model must be employed in order to test this issue.

Another possible aspect involves the spatial inhomogeneity. In order for 2fce roars to undergo decay instability,
the rays associated with these electrostatic modes must be confined within a close vicinity. Otherwise, if the
rays diverge away from the source region, then the wave-wave interaction may not become very efficient. To
investigate this scenario, one must treat the problem not only as a spatially nonuniform system, but one must
also consider the ray path propagation in spatially inhomogeneous domain.

An interesting observational test would be to see whether 3fce roars may be able to generate 6fce roars by
nonlinear process discussed in the present paper, since our theory is equally applicable to such a situation.
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