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Introduction 

Background:  

Financial mathematics is a growing field in which mathematicians and business professionals 

alike are regularly finding new links between the two industries. By further developing this area 

of study, businesses will be able to evaluate trends analytically by implementing mathematical 

techniques in their investigations. Businesses with a particular interest in financial mathematics 

include investment banks, commercial banks, hedge funds, insurance companies, corporate 

treasuries, and regulatory agencies. In particular, the field of actuarial science focuses directly on 

the applications of mathematics in finance, and requires all aspiring actuaries seeking 

certification to successfully complete an exam specifically designed to test the applicant’s ability 

to decipher through a series of questions related to the study of financial mathematics
1
.  

 

History of Financial Mathematics:  

For centuries, economists have used mathematics to create models and theories, but beginning in 

the late nineteenth century, scientists began to use mathematical techniques and reasoning to 

explain financial instruments and trends. The founding father of financial mathematics is Louis 

Bachelier, who used Brownian motion to explain stock prices and mathematical models to 

analyze financial markets. After the creation of several models for Brownian motion, stochastic 

calculus was developed by Kiyoshi Itô in 1940 and used to explain the price of financial products 

in 1969 due to the innovations of Robert Merton. Merton, alongside  Fisher Black and Myron 

Scholes, developed the famous Black-Scholes Model in 1973, which was used to calculate the 

theoretical price of European put and call options, ignoring any dividends. These innovations 

laid the ground work for the study of financial mathematics and contributed greatly to actuarial 

science.  

 

While Louis Bachelier was leading the charge in the implementation of mathematics in the 

finance field, the Actuarial Society of America was formed in 1889. The first actuary in North 

America was Jacob Shoemaker of Philadelphia. Since then, the Actuarial Society of America has 

grown immensely and has become the Society of Actuaries. In addition, another branch of 

actuarial science focused specifically on property and casualty insurance emerged, the Casualty 

Actuarial Society. Actuaries use mathematics, statistics, and financial theory to assess and 

analyze the financial cost of risk
2
.  

 

 

 

                                                           
1 "What Is Financial Math." NCSU Financial Math. 06 July 2014. Web. 02 Aug. 2016.  

<https://financial.math.ncsu.edu/what-is-financial-math/>. 
 
2
 Skantzos, Nicholas. "Some Background History on Financial Mathematics." 2010. Web. 2 Aug. 

2016. <http://itf.fys.kuleuven.be/~nikos/papers/lect2_blackscholes.pdf> 
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Objective and Methodology:  

The objective of this honors senior capstone project is to research the ways that mathematics is 

used in the field of finance with an emphasis on the techniques applied in the actuarial science 

industry. This project will also assist those preparing for the second actuarial exam
3
.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3 "Exam FM – Financial Mathematics." Member. Web. 02 Aug. 2016. 

<https://www.soa.org/education/exam-req/edu-exam-fm-detail.aspx>.  
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Section 1: Interest Theory 

In every instance where money is either borrowed or lent, there will be interest involved. A 

lender will receive interest since he/she will expect an additional return in exchange for loaning 

money. A borrower will pay interest since he/she is using the lenders money in place of their 

own. This section will include a description and examples of the various concepts associated 

with interest theory.  

a) Simple Interest 

As implied by the name, simple interest is the most straight forward interest to calculate. 

For the purpose of this paper, we will use r to denote the annual interest rate, P to denote 

the principal amount or present value, t to denote time, and A to denote the amount after 

interest is applied or the future value of the investment. The formula for simple interest 

is: 

𝐴 = 𝑃(1 + 𝑟𝑡). 

Example 1.1: 

If a bank is paying 2% annual interest for a savings account, and we invest $500, after 

three years, what will our account balance be? 

Solution: 

𝐴 = 500(1 + 0.02(3)) = $530. 

b) Compound Interest 

The next type of interest we will discuss is compound interest which accrues interest 

much faster than simple interest. With compound interest, we earn interest on our 

interest. That is, interest is earned on the previous amount, not just the principal amount 

of the investment or loan. The formula for compound interest is: 

𝐴 = 𝑃 (1 +
𝑟

𝑛
)

𝑛𝑡

 

Where n is the number of compounding periods per year. The more compounding periods 

per year the more interest is accrued. That being said, continuous compounding will 

accumulate the most interest. The formula for continuous compound interest is: 

𝐴 = 𝑃𝑒𝑟𝑡. 
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Example 1.2: 

If we were to invest $1,000 into a savings account earning an interest rate of 3% 

compounded quarterly, what would the value of our investment be in five years? 

Solution: 

𝐴 = 1000 (1 +
0.03

4
)

4(5)

= $1,161.18 

Example 1.3: 

Jessica loaned $200 to Megan at an interest rate of 1.5% compounded continuously with 

a maturity of three months. How much will Megan need to pay to Jess in three months? 

Solution: 

𝐴 = 200𝑒0.015(0.25) = $200.75 

c) Effective Rate 

Most investments and loans are quoted using the nominal rate which is the periodic 

interest rate multiplied by the number of periods per year. However, the nominal rate 

does not take into account the compounding that typically occurs. So, we use the 

effective rate as a more accurate measure of the amount of interest that is charged or 

accrued. The effective rate can also be used to accurately compare different investment 

options. If interest is compounded over n periods, the formula for effective interest rate, 

𝑟𝑒 , is: 

𝑟𝑒 = (1 +
𝑟

𝑛
)

𝑛

− 1 

If interest is continuously compounded, the effective interest rate is given by 𝑟𝑒 = 𝑒𝑟 − 1.  

Example 1.4: 

Michaela has the option of investing in an account that provides an interest rate of 2% 

compounded monthly or an account with an interest rate of 2.5% compounded quarterly. 

Which account would give Michaela a higher return on her investment? 

Solution: 

𝑟𝑒 = (1 +
0.02

12
)

12

− 1 = 0.02018 = 2.018% 
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𝑟𝑒 = (1 +
0.025

4
)

4

− 1 = 0.025235 = 2.535% 

Thus, Michaela is better off investing in the account offering a 2.5% interest rate 

compounded quarterly.  

d) Inflation and Real Rate of Interest 

Inflation is the general increase in prices which is most often a sign of a growing 

economy. However, inflation erodes investments, and investors need to carefully 

construct strategies that account for inflation. Those saving for activities far into the 

future, such as retirement or college tuition are at a particularly high risk for inflation. 

The real rate of interest is the rate that accounts for inflation. The real rate is found 

simply by subtracting the predicted inflation rate from the nominal rate of the investment 

or loan. On average, the long term inflation rate in the United States over the past one 

hundred years is 3.22 percent. This means that prices will double approximately every 

twenty years
4
.  

Example 1.5: 

Bill and Mary are recently married and looking to start planning for their retirement. 

They are both 25 years of age, plan to retire at age 65 and have found a money market 

account with an interest rate of 7%. Bill and Mary plan to withdraw $2,500 per month for 

30 years upon retirement. How much do Bill and Mary need to invest monthly to meet 

their retirement goals?  

Solution: 

First we will calculate the present value of the monthly deposits 

𝑃𝑉 = 𝑥 ∑ (1 +
0.07

12
)

−𝑖

= 𝑥(160.91884)

480

𝑖=1

 

where x is the monthly deposit.  

 

Next we will calculate the present value of the monthly withdrawals 

𝑃𝑉 = 2500 ∑ (1 +
0.07

12
)

−𝑖

=

841

𝑖=481

23,055.9537 

Set these results equal to each other and solve for x 

160.91884𝑥 = 23055.9537 

𝑥 = $143.277 

                                                           
4 McMahon, Tim. "InflationData.com." US Inflation Long Term Average. 01 Apr. 2014. Web. 15 

Sept. 2016. <http://inflationdata.com/Inflation/Inflation_Rate/Long_Term_Inflation.asp> 

http://inflationdata.com/Inflation/Inflation_Rate/Long_Term_Inflation.asp
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e) Discount Rate 

 

The discount rate is often used interchangeably with the interest rate. However, the 

discount rate refers the interest rate we would need to earn on a given amount of money 

today to end up with a given amount in the future.
5
 The discount rate can also be defined 

as the rate used in discounted cash flow analysis. Discounted cash flow analysis is the 

calculation of the present value of future cash flows. In practical uses, some financial 

securities are sold below the face value to entice buyers to invest. When a financial 

instrument is sold below the face value it is classified as below par. The difference 

between the face value and the price of the security divided by the face value is the 

discount factor, which is measured as a percent. The discount rate is the rate at which the 

selling price would accumulate to the face value in a specified time period. Pure discount, 

or zero coupon bonds, are typical examples of this phenomenon. The discount rate of a 

pure discount bond can be found with the formula: 

𝑃 =
𝑉

(1 + 𝑟)𝑡
 

Where P is the price at which the bond is selling and V is the face value.  

 

Example 1.6: 

 

Suppose a pure discount bond is being traded for $96.50 and has a face value of $100. If 

the bond has a maturity of five years, what is the discount rate? 

 

Solution: 

 

96.50 =
100

(1 + 𝑟)5
 

(
100

96.5
)

1/5

− 1 = 𝑟 = 0.00715 = 0.715% 

  

f) Time Value of Money 

 

The fundamental idea of the time value of money is that a dollar today is not worth a 

dollar tomorrow. The same dollar today is actually worth less in the future. The first 

reason for this is that consumers prefer present consumption to future consumption. In 

order to encourage future consumption, consumers will need to be offered more at a 

future point in time. Thus, as the desire for present consumption increases, the value of 

                                                           
5
 Picardo, CFA Elvis. "Discount Rate." Investopedia. 23 Jan. 2014. Web. 15 Sept. 2016. 

<http://www.investopedia.com/terms/d/discountrate.asp>. 
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the dollar will decrease. Another reason for the decrease in future dollar valuation is 

inflation, which is the general rise in prices. As prices increase, the purchasing power of 

one dollar decreases. Lastly, if there is any uncertainty or risk associated with the future 

cash flow, the future cash flow will have a lower value
6
.  

 

g) Future Value 

 

Relating to the time value of money, the future value is the value of a current asset at a 

specific time in the future given an interest rate. The future value is used to compare the 

profit of various investments into the future. Since the future is unknown, some future 

value calculations are not as easy to determine. For example, stocks are highly volatile 

and dividend payments can change at varying rates. However, bonds, annuities and other 

fixed securities can be easily compared using a future value calculation. The formula 

used to determine the future value, FV, of a lump sum with compounding is: 

𝐹𝑉 = 𝑃 (1 +
𝑟

𝑛
)

𝑛𝑡

 or 𝐹𝑉 = 𝑃𝑒𝑟𝑡 for continuous compounding. 

 

Example 1.7: 

 

Calculate the value of a lump sum of $500 deposited today in a savings account that earns 

1.25% interest compounded monthly in ten years.  

 

Solution: 

𝐹𝑉 = 500 (1 +
0.0125

12
)

12∗10

 

 

𝐹𝑉 = $556.53 

h) Present Value 

The opposite of future value, is present value. The present value represents the value of a 

future stream of payments or sum of money given a specific interest rate. The interest rate 

at which the money is discounted is called the discount rate. Similar to future value, the 

present value can be used to accurately compare investment or loan options. The known 

future values are discounted at the discount rate back to time zero and the higher the 

discount rate, the lower the present value. The formula for the present value of a lump 

sum is: 

𝑃 = 𝐴 (1 +
𝑟

𝑛
)

−𝑛𝑡

 or 𝑃 = 𝐴𝑒−𝑟𝑡 if compounding continuously. 

                                                           
6
 Damoda, Aswath. The Time Value of Money. Web. 20 Sept. 2016. 

<http://people.stern.nyu.edu/adamodar/pdfiles/acf4E/presentations/timevalue.pdf>. 
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Similarly, the present value of a stream of income is given by: 

𝑃 = ∫ 𝑃(𝑡)𝑒−𝑟𝑡𝑑𝑡

𝑇

0

 

Where 𝑃(𝑡) is income stream at each value of t.  

Example 1.8: 

Olivia is deciding between two investments that will make annual payments for the next 

three years. The first option will pay $100 in year one, $150 in year two, and $125 in year 

three. The other investment will pay $125 in year one, $100 in year two, and $150 in year 

three. Assuming an interest rate of 3% compounded quarterly, which investment should 

Olivia choose? 

Solution: 

Option 1: 

𝑃𝑉 = 100 (1 +
0.03

4
)

−4(1)

+ 150 (1 +
0.03

4
)

−4(2)

+ 125 (1 +
0.03

4
)

−4(3)

= $352.63 

 

 

 

Option 2: 

𝑃𝑉 = 125 (1 +
0.03

4
)

−4(1)

+ 100 (1 +
0.03

4
)

−4(2)

+ 150 (1 +
0.03

4
)

−4(3)

= $352.65 

Thus, although fairly insignificant in this example, Olivia should invest in the second 

option.  

i) Net Present Value 

 

The net present value, often abbreviated as NPV, is the difference between the present 

value of cash inflows and the present value of cash outflows. Net present value is often 

used in budgeting to determine the profitability of a project or investment. The formula 

for net present value is: 

𝑁𝑃𝑉 = ∑
𝐶𝑖

(1 + 𝑟)𝑖
− 𝐶𝑜

𝑇

𝑖=1

 

Where 𝐶𝑖 is the cash flow, and 𝐶0 is the initial cash outflow or investment.  
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Example 1.9:  

 

ABC Corporation is considering investing in building a new structure for their 

manufacturing operations. The initial investment for the project is $1,000. Over the next 

five years, the company expects to take in $150, $160, $210, $250, and $275 each year. 

With an interest rate of 3%, will this project be profitable? 

 

Solution: 

 

𝑁𝑃𝑉 = (
150

(1 + 0.03)1
+

160

(1 + 0.03)2
+

210

(1 + 0.03)3
+

250

(1 + 0.03)4
+

275

(1 + 0.03)5
) − 1000 

 

𝑁𝑃𝑉 = 947.965 − 1000 = −$52.03 

 

Thus, this investment would not be profitable and ABC Corporation should not embark 

on this project.  
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Section 2: Annuities 

 

Annuities are financial products sold by financial institutions and can be used to generate a 

steady stream of cash flow for some future amount of time. Individuals typically make deposits 

into an account up until a certain date and then receive payments for a specified number of 

periods. These payments are typically equal, or level, but they can also vary, known as a non-

level annuity. Some examples of situations in which individuals would use annuities are 

retirement accounts, paying off loans, life insurance, and pension funds.  

 

a) Annuity-immediate 

 

An annuity-immediate or annuity due is an annuity in which payments are made at the end of 

each time period. Typically individuals are interested in the present value of their future cash 

flow. The present value of the annuity is simply the sum of the present values of each 

payment. This can be calculated using the following formula:
7
 

𝑃𝑉 = 𝑃 (
1 − (1 + 𝑟)−𝑛

𝑟
) 

Where P is the payment amount, r is the interest rate per payment period, and n is the number     

of payments.  

  

Example 2.1: 

 

Calculate the present value of an ordinary annuity that makes payments of $1,000 annually 

for 10 years at an interest rate of 2%.  

 

Solution: 

 

Using the formula, with 𝑃 = 1,000, 𝑟 = 0.02, and 𝑛 = 10, we find that the present value is     

𝑃𝑉 = 1000 (
1−(1+0.02)−10

0.02
) = $8,982.585.  

 

b) Annuity due 

 

An annuity due is similar to an ordinary annuity except the payment is received at the 

beginning of each time period as opposed to the end. This type of annuity is not as common 

but is another viable investment option that provides a steady stream of income. A common 

example of an annuity due is rent payments received by a landlord. An annuity due is more 

beneficial for the recipient because it provides them with a higher cash flow faster which can 

be invested for a longer period of time. On the other hand, individuals paying the annuity 

miss out on this benefit since they are obligated to make the payment sooner. The type of 

                                                           
7
 Finan, Marcel B. "A Basic Course in the Theory of Interest and Derivatives Market." 157. 

Arkansas Tech University, 15 Aug. 2015. Web. 30 Sept. 2016. 

<http://faculty.atu.edu/mfinan/actuarieshall/mainf.pdf>. 
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annuity is agreed upon in the contract between the recipient and beneficiary. Similar to 

ordinary annuities, it is often desirable to compare various options for annuity dues which 

can be accomplished by comparing the present values of the streams of income. The present 

value can be calculated with the following formula:
8
 

𝑃𝑉 = 𝑃 + 𝑃 (
1 − (1 + 𝑟)−(𝑛−1)

𝑟
) 

Where P is the payment paid or received, r is the interest rate, and n is the number of time 

periods.  

 

Example 2.2: 

 

Calculate the present value of an annuity due that makes payments of $1,000 annually for 10 

years at an interest rate of 2%. 

 

Solution:  

 

Using the formula with 𝑃 = 1,000, 𝑟 = 0.02, and  𝑛 = 10, we find that the present value is 

𝑃𝑉 = 1,000 + 1,000 (
1−(1+0.02)−(10−1)

0.02
) = $9,162.237. This annuity due has a higher present 

value than the ordinary annuity calculated above.  

  

c) Perpetuity 

 

A perpetuity is a type of annuity that has an infinite term. Similar to annuities, perpetuities 

can be due or received at the beginning or end of each time period, as specified in a contract. 

Since perpetuities are infinite, there is no way to calculate the accumulated value of the 

security, but we can calculate the present value by using the concept of geometric series. The 

formula for calculating the present value of an ordinary perpetuity (payment due or received 

at the end of the time period) is: 

𝑃𝑉 =
𝑃

𝑟
 

Where P is the payment due or received and r is the discount rate. Similarly, the formula for 

the present value of a perpetuity due (payment due or received at the beginning of the time 

period) is: 

𝑃𝑉 =
𝑃

𝑟
+ 𝑃0 

Where 𝑃0 is the initial payment
9
.  

                                                           
8
 Root. "Annuity Due." Investopedia. 28 July 2015. Web. 1 Oct. 2016. 

<http://www.investopedia.com/terms/a/annuitydue.asp>. 
9
 "PreMBA Finance." PreMBA Finance. Web. 1 Oct. 2016. 

<http://ci.columbia.edu/ci/premba_test/c0332/s5/s5_4.html> 
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Example 2.3:  

 

Calculate the present value of the ordinary perpetuity that makes payments of $1,000 with an 

interest rate of 2%. Then calculate the present value of a perpetuity due with the same 

payment and interest rate.  

 

      Solution: 

 

To calculate the present value of the ordinary perpetuity, we use the formula 

𝑃𝑉 =
𝑃

𝑟
=

1,000

0.02
= $50,000. To calculate the present value of the perpetuity due, we use the 

formula 𝑃𝑉 =
𝑃

𝑟
+ 𝑃0 =

1,000

0.02
+ 1,000 = $51,000.  

 

d) Payable monthly or continuously 

 

In some instances, annuities and perpetuities will be compounded more often than just 

annually. When this occurs, we must calculate the effective interest rate before implementing 

any of the formulas we have used above. The formula to calculate the effective interest rate 

is: 

𝑟𝑒 = (1 +
𝑟

𝑛
)

𝑛

− 1 

Where r is the annual interest rate, n is the number of compounding periods per year, and t is 

the number of years
10

. From here, we will use the present value formula for the typical 

annuity or perpetuity as previously stated.    

 

Example 2.4: 

 

Find the present value of an ordinary annuity of $1,000 monthly for 2 years with an interest 

rate of 2% compounded quarterly.  

 

Solution: 

 

First, we must find the effective interest rate with 𝑟 = 0.02, 𝑛 = 4, and 𝑡 = 2.  

𝑟𝑒 = (1 +
0.02

4
)

4

− 1 = 0.020151 

Next, we will use this information to calculate the present value of an ordinary annuity with 

𝑃 = 1,000, 𝑛 = 2(12) = 24, and 𝑟 = 0.020151.  

𝑃𝑉 = 1,000 (
1 − (1 + 0.020151)−24

0.020151
) = $18,881.612 

 

                                                           
10

 "Financial Mathematics for Actuaries." Web. 5 Oct. 2016. 

<http://www.mysmu.edu/faculty/yktse/FMA/S_FMA_2.pdf+>. 
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e) Non-level annuities/cash flows 

 

So far, we have discussed level annuities and perpetuities that have the same payment or cash 

flow for each time period. However, there are some contracts that have varying payment 

amount which are known as non-level annuities. Two types of non-level annuities are 

arithmetic and geometric. Arithmetic annuities have a common difference between 

successive payments and geometric annuities have a common ratio.  

 

f) Geometric increasing/decreasing annuity 
 

A geometric annuity is an annuity that that has payments that create a geometric progression. 

Instead of having a common difference as in an arithmetic annuity, a geometric annuity has a 

common multiple. For example, an annuity may have a growth rate of 10% each year so each 

successive payment would be 10% more than the last. If the common multiple is positive, the 

annuity is increasing whereas if the common multiple is negative, the annuity is decreasing. 

The formula for calculating the present value of a geometric annuity is: 

𝑃𝑉 =
𝑃

𝑟 − 𝑔
[1 − (

1 + 𝑔

1 + 𝑟
)

𝑛

] 

Where P is the first payment, r is the interest rate, g is the growth rate, and n is the number of 

periods
11

.  

 

Example 2.6: 

 

Calculate the present value of the an annuity that has payments of $100, $110, $121,  

$133.10, and $146.41 that has an interest rate of 2%.  

 

Solution:  

 

First we must determine whether or not this annuity is geometric by attempting to calculate 

the common multiple between the payments. So, 
110

100
= 1.1,

121

110
= 1.1,

133.10

121
= 1.1, 𝑒𝑡𝑐.   

Therefore, the common multiple is 1.1 or 10%. Using the above formula, the present value of 

the annuity is: 

𝑃𝑉 =
100

0.02 − 0.10
[1 − (

1 + 0.10

1 + 0.02
)

5

] = $440.753 

 

g) Term of annuity 

 

The number of periods of an annuity or the length of time of the annuity is referred to as the 

term of the annuity. It would be useful to find the term of the annuity when calculating how 
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long it will take to pay off a debt with a certain regular payment. The equation for solving for 

the term of the annuity is: 

𝑛 = 𝑙𝑛 [(1 −
𝑃𝑉(𝑟)

𝑃
)

−1

] ÷ 𝑙𝑛(1 + 𝑟) 

Where PV is the present value of the annuity, P is the payment or cash flow amount, and r is 

the interest rate
12

.  

Example 2.7:  

 

Bob is purchasing a car and taking out a loan for $5,000 at a rate of 4% and plans to make 

monthly payments of $250. How many payments will Bob need to make to pay off his debt? 

 

Solution:  

 

Using the above formula for n, where 𝑃𝑉 = 5,000, 𝑟 = 0.04, and 𝑃 = 250 we can solve for 

the number of payments John will need to make.  

 

𝑛 = 𝑙𝑛 [(1 −
5000(0.04)

250
)

−1

] ÷ 𝑙𝑛(1 + .04) = 41.035 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠 
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<http://www.financeformulas.net/Number-of-Periods-of-Annuity-from-Present-Value.html>. 



R. Stanley                   Exam FM Prep 
 

17 
 

Section 3: Loans 

 

Borrowing money is vital in many aspects of life and it is important to know how to calculate the 

interest earned on loans, the amount of time it will take to pay off the loan, and the different 

options there are to repay the debt.  Depending on which side of the loan you are on, the 

borrower or lender, you will have different objectives.  

 

a) Principal, Interest, and Term of a loan 

 

The principal of the loan is the total amount borrowed or lent. Interest accumulates on this 

amount and the terms of interest are agreed upon at the time of the development of the loan. 

There is an explicit interest rate that will be paid or received and depends on the individual’s 

creditworthiness. The term of the loan refers to the length of the loan. There is always a 

deadline for the loan to be paid off and the monthly payments are typically derived from the 

time of the loan and interest rate. In order to decrease the risk of default, frequently there is 

some sort of collateral for the loan. For example, mortgage and car loans are backed by the 

house and car respectively. Since there is collateral, the loan is deemed less risky than a loan 

with no security and as such would have a lower interest rate.  

 

b) Final payment (drop payment, balloon payment) 

 

The final payment of a loan can either be greater than, less than, or equal to the previous 

payments made on the loan. If the payment is greater than the typical payments, it is said to 

be a balloon payment whereas if it is less than, it is a drop payment. The formula for 

calculating the drop payment amount is: 

𝑃𝑑 = 𝑃 (
(1 + 𝑟)𝑡 − 1

𝑟
) (1 + 𝑟)1−𝑡 

Where 𝑃 is the typical payment amount, r is the interest rate, and t is the time at which the 

payment is made with regards to the term of the loan. The formula for calculating the balloon 

payment is
13

: 

𝑃𝑏 = 𝑃 + 𝑃 (
(1+𝑟)𝑡−1

𝑟
) (1 + 𝑟)1−𝑡  

 

Example 3.2:  

 

Calculate the balloon payment of John’s loan with a principal of $20,000 if he has been 

making monthly payments of $1,000, the term of the loan is two years, and the monthly 

interest rate is 1%. John is making this payment on the twenty third month of his loan.  
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Solution:  

 

Using the formula for determining the balloon payment amount,  

𝑃𝑏 = 1000 + 1000 (
(1.01)23/24 − 1

0.01
) (1.01)1−23/24 = $1958.53 

c) Amortization 

 

One method to pay off a loan is amortization. With this method, each payment is first used to 

pay off the interest accrued since the last payment. The remaining portion of the payment is 

then used to reduce the principal amount of the loan. We can construct an amortization table 

that calculates the amount of interest and principal that is paid off at each payment period. To 

construct an amortization table, we will need five columns including the year, payment, 

interest payment, principal payment, and outstanding balance. The following chart is an 

example of what an amortization schedule would look like where X is the principal of the 

loan, r is the interest rate, P is the payment amount, and Y is the remaining balance after n 

years.  

  

 
 

     Example 3.3:  
 

Create an amortization schedule for a car loan of $2,000 that requires monthly payments of 

$500 with an interest rate of 8%. How many years will it take to pay off the loan? 

 

Solution:  

 

The amortization schedule is given by: 
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Therefore, the loan will be paid off between 5 and 6 years.  

 

d) Sinking fund 

 

Another method to calculate the repayment schedule of a loan is through a sinking fund. The 

borrower may choose to make deposits into a fund known as a sinking fund to accumulate 

the principal amount of the loan plus interest. Therefore, at the end of the term of the loan, 

the borrower will be able to make a lump sum payment to completely repay the principal 

amount.  

 

There are two interest rates that we must be aware of when using the sinking fund method. 

There is the interest rate of the loan and the interest rate that the sinking fund provides. Thus, 

we must calculate the total we will owe for the loan at maturity including interest before 

determining the dollar amount of monthly deposits that we must make. To calculate the 

future value of the loan, we will need to know the interest rate and the time of the loan. Then, 

we will simply use the future value formula that we discussed in Section 1. Next, we will 

create a schedule similar to the amortization schedule that shows the accumulated interest on 

our deposits. The following chart is an example of a sinking fund schedule
14

:  

 

 
 

     Example 3.4: 

 

Jessica wants to pay off her car loan through a sinking fund. The loan is for $4,000 and 

charges interest of 1.5% compounded monthly. She has found a sinking fund that accrues 

interest at 1.4% compounded monthly and believes she will be able to make monthly deposits 

of $500. How long will it take Jessica to pay off this loan? 

 

Solution:  
  

First, we will construct the sinking fund schedule given that Jessica will deposit $500 per 

month which accrues interest at 1.4% compounded monthly. 
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Next, we must calculate the future value of the $1,000 loan compounded monthly at 1.5% 

using the future value formula 𝐹𝑉 = 𝑃 (1 +
𝑟

𝑛
)

𝑛𝑡

where P is the principal amount, r is the 

rate, n is the number of compounding periods, and t is the amount of time.  

 

𝐹𝑉 = 4000 (1 +
0.015

12
)

12∗8

= $4509.65 
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Section 4: Bonds 

 

Bonds are one of the safest investment options and are great investment alternatives for those 

seeking an almost guaranteed cash flow. There are several different types of bonds including 

government, corporate, pure discount, and coupon. Each bond received a rating that measures the 

amount of risk associated with the bond and with the extra risk of lower rated bonds comes some 

excess return.  

 

a) Price, Face Value, and Book Value 

 

The face value of the bond is the nominal or dollar value of the security. Typically the face 

value is $1,000. Bonds rarely trade at the face value, which is known as trading at par. 

Instead they will trade above or below par. If the bond offers coupon payments, it will trade 

above par, whereas a pure discount, non-coupon paying bond will trade below par. The price 

at which the bond is traded is known as the price of the bond. Finally, the book value, also 

referred to as the carrying value of the bond, is the present value of all of the payments that 

are to be made.  

 

b) Amortization of premium 

 

When a bond is issued at premium, meaning the price of the bond is greater than its’ inherent 

face value, the debt is gradually written off through a process of amortization. Similar to the 

amortization schedule for a loan, the amortization of the premium of the bond is easily 

computed through the use of a table. We will want columns for the time period, opening 

price, interest, payment amount, closing price, and the premium
15

. An example of an 

amortization table for bond premiums is as follows where X is the price of the bond, r is the 

rate at which the bond accrues interest, i is the bond rate, and Y is the opening value after n 

time periods: 

 

 
 

     Example 4.1:  

 

A premium bond is trading for $1,250, has a face value of $1,000, earns an interest rate of 

5%, and the bond rate is 7%. Construct an amortization schedule of the premium bond.  
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Solution:  

 
 

Thus, the premium will be amortized between the eighth and ninth year of the bond. 

 

c) Redemption value 

 

When the bond reaches it maturity, the owner of the bond will receive the agreed upon 

redemption value. If the redemption value is equal to the face value it is redeemed at par. 

Typically the bond will be redeemed above or below par depending on whether the bond was 

pure discount or paid coupons.   

 

d) Coupon and coupon rate 

 

Some bonds provide equal payments throughout the life of the bond known as coupon 

payments. The payments can be expressed as a percentage of the face value of the bond as 

the coupon rate. Depending on the type of bond, coupons may be paid annually, 

semiannually, quarterly, or monthly. The coupon payment plays a large role in pricing a bond 

since investors will need to account for the cash flow they receive over the life of the bond in 

order to determine a fair price. The formula used to calculate the price of a bond is:  

𝑃 =
𝑉

(1 + 𝑦)𝑇
+ ∑

𝐶𝑖

(1 + 𝑦)
𝑖
𝑛

𝑛𝑇

𝑖=1

 

     Where 𝐶𝑖   denotes the coupon payment at time i, y is the yield, n is the number of times the      

     coupon is paid per year, V is the face value, and T is the maturity.  

 

     Example 4.2: 

 

Calculate the price of a ten year bond that has a face value of $1,000, pays semiannual   

coupons of $25, and has a yield rate of 3%.  

 

Solution: 

 

Using the above formula for pricing a bond, this bond should be priced at: 
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𝑃 =
1000

(1.03)10
+ ∑

25

(1.03)
𝑖
2

10(2)

𝑖=1

= $1,173.779 

 

e) Callable/non-callable 

 

A traditional bond that pays regular coupons or is sold at a discount is also referred to as a 

non-callable bond. On the other hand, a slightly riskier investment that can offer a higher 

payoff is a callable bond. A callable bond has two potential expiration dates; the original 

maturity date and the callable date. At the callable date, the issuer may choose to call the 

bonds from the investor and is essentially able to retire the bonds before the original maturity 

date. A bond issue would want to call the bond if interest rates were to drop since the issuer 

would be able to reissue the bond at the lower rate
16

. For example, if an investor purchases a 

10-year callable bond with an interest rate of 3% and a callable date of 2 years, and the 

interest rate drops to 2% after 2 years, the issuer will call the bond and reissue it at the 2% 

interest rate.  

 

f) Calculate the yield rate 

 

To calculate the yield rate of a bond, we will use the formula for calculating the price of a 

bond and simply solve for the rate. The yield of a zero coupon or pure discount bond is given 

by the equation: 

𝑦 = (
𝑉

𝑃𝑉
)

1
𝑛

− 1 

Where V is the face value, PV is the present value, and n is the number of periods of the 

bond. To calculate the yield of a bond that pays coupons, simply use the pricing formula for a 

coupon bond and solve for the yield.   

 

Example 4.3: 

 

Calculate the yield rate of a ten year pure discount bond that has a face value of $1,000 and is 

currently trading for $950. 

 

Solution:  

The yield for this bond is 𝑦 = (
1000

950
)

1

10
− 1 = 0.00514 = 0.514% 
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Section 5: General Cash Flows and Portfolios 

 

Constructing a well thought out, diversified portfolio is essential to optimizing long term return 

on investment. There are various measures that can be taken to determine which type of 

investment is best for each individual depending on their risk tolerance and objectives. In 

addition, there are several methods that can be used to compare investment options including 

matching Macaulay and modified duration, and relating rates of return.  

 

a) Dollar-weighted rate of return  

 

One method that can be used to determine the rate of return of a portfolio is the dollar-

weighted or money-weighted rate of return. This rate of return is calculated by equating the 

present value of all of the cash flows and terminal values equal to the initial value of the 

investment. This rate is also known as the internal rate of return. The dollar weighted rate of 

return can be affected heavily by the time at which larger cash flows are received and 

therefore can provide an accurate measurement of actual dollar amounts invested over time
17

. 

To calculate the dollar-weighted rate of return, we will set the present value of cash outflows 

equal to the present value of all cash inflows. We can use the formula:
18

  

𝑁𝑃𝑉 = ∑
𝐶𝑖

(1 + 𝑦)𝑖

𝑇

𝑖=1

− 𝐶0 

Where 𝐶𝑖 is the cash flow at time i, 𝐶0 is the initial cash flow, NPV is the net present value, 

and y is the yield rate. Then to find the rate of return, r =
𝑁𝑃𝑉

𝐶0
 .  

 

Example 5.1: 

 

Calculate the dollar weighted rate of return of an investment that has an initial investment of 

$500 and annual cash flows of $150, $125, $175, $150 with an interest rate of 2%.  

 

Solution:  

 

𝑁𝑃𝑉 = (
150

(1.02)1
+

125

(1.02)2
+

175

(1.02)3
+

150

(1.02)4
) − 500 = 70.688 

 

Next, the rate of return is 
𝑁𝑃𝑉

𝐶0
=

70.688

500
= 14.14%. 
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b) Time-weighted rate of return 

 

Similar to the dollar-weighted rate of return, the time-weighted rate of return is used to 

measure the rate of return of a portfolio of assets. However, the time-weighted rate of return 

is the measure of the compound rate of growth of a portfolio. This rate is also known as the 

geometric mean return. This rate assumes that all cash inflows are reinvested in the portfolio 

and the rate is converted into an annual rate
19

. The formula for calculating the annualized 

time-weighted rate of return of a portfolio is: 

(1 + 𝑟1)
𝑡1
𝑇 (1 + 𝑟2)

𝑡2
𝑇 … (1 + 𝑟𝑖)

𝑡𝑖
𝑇 − 1 

Where 𝑟𝑖 is the rate of the cash flows at each time period i, T is the maturity date, and 𝑡𝑖 is the 

time interval.  

 

Example 5.2:  

 

Calculate the time-weighted rate of return of a set of cash flows that have a rate of 3% for the 

first two years and 4% for the last three years.  

 

Solution:  

 

Using the above formula, we can easily calculate the annualized time-weighted rate of return 

𝑟 = (1.03)
2
5(1.04)

3
5 − 1 = 3.5989% 

 

c) Duration (Macaulay and modified)  

 

Macaulay duration is the percentage change in price for a 100 basis point change in rates. It 

measures the sensitivity to changes in prices of a portfolio or single asset. The formula for 

calculating the Macaulay duration of a coupon bond is:  

𝐷 =

𝑇
𝑉

(1 + 𝑦)𝑇 + ∑
𝑖
𝑛

𝐶𝑖

(1 + 𝑦)
𝑖
𝑛

𝑛𝑇
𝑖=1

𝑃
 

Where T is the maturity, V is the face value, y is the yield rate, n is the number of 

compounding periods, and 𝐶𝑖 is the coupon payment at time i. To calculate the duration of a 

portfolio of assets, we can use the formula:  

𝐷 = ∑ 𝛼𝑗

𝑃𝑗

𝑃
𝐷𝑗

𝑗

 

Where 𝛼𝑗 is the number of shares of each stock j, 𝑃𝑗 is the price of stock j, 𝑃 is the value of 

the portfolio, and 𝐷𝑗  is the duration of stock j.  
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In addition to Macaulay duration, modified duration can be used to approximate the 

percentage change in a bond’s price for a 100 basis point change in yield with the assumption 

that the bond’s expected cash flows does not change when the yield changes. Calculating the 

modified duration of a stock or portfolio depends on the Macaulay duration and can be found 

using the formula:
20

 

𝐷 =
𝑀𝑎𝑐𝑎𝑢𝑙𝑎𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(1 +
𝑦
𝑛)

 

     Where y is the yield rate and n is the number of compounding periods.  

 

     Example 5.3: 

 

Calculate the Macaulay and modified durations of a two year coupon bond with a face value 

of $1,000 that pays semi-annual coupons of $25 and has an interest rate of 2% and is 

currently priced at $1,029.  

 

Solution: 

 

The Macaulay duration can be calculated with the formula: 

𝐷 =
2

1000
(1.02)2 +

1
2 (

25
1.02.5) + (

25
1.02) +

3
2 (

25
1.021.5) + 2 (

25
1.022)

1029
= 1.986 

We can now calculate the modified duration: 

𝐷 =
1.986

(1 +
0.02

2 )
= 1.966 

 

d) Convexity  

 

Convexity is the measure of how the duration of the bond changes as the interest rate 

changes. This measure is often used as a risk management tool that helps determine the 

amount of market risk the bond is exposed to. There is an inverse relationship between bond 

prices and interest rates. That is, as interest rates rise, bond prices decrease, and vice versa. 

Convexity is a stronger measure of interest rate risk than duration because unlike duration, it 

does not assume a linear relationship between bond prices and interest rates. Duration is a 

good measure for small changes in interest rates but convexity is better for assessing the 

impact on bond prices when there are large fluctuations in interest rates. As convexity 

increases, the systematic risk that the portfolio is exposed to increases and vice versa. In 
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general, the higher the coupon rate, the lower the convexity (market risk) of the bond. To 

calculate convexity, we can use the following formula:
21

 

𝐶 =

1
(1 + 𝑖)2 [∑

𝐶𝐹𝑖

(1 + 𝑖)𝑡 (𝑡2 + 𝑡)𝑇
𝑡=1 ]

𝑃
 

Where 𝐶𝐹𝑖 is the cash flow at time i, t is the current time, i is the interest rate, and V is the 

face value.  

 

Example 5.4:  

 

Calculate the convexity of a one year bond that pays a coupon of $25 semiannually, has an 

interest rate of 2% and a face value of $1,000.  

 

Solution: 

 

We will use the above formula for convexity to calculate the sensitivity to interest rate 

changes of this coupon bond. 

𝐶 =

1
(1.02)2 [

25
(1.02)2 (0. 52 + 0.5) +

25
(1.02)2 (12 + 1)]

1000
= .0635 

 

e) Forward rate  

 

A forward rate is a rate between two time periods that depends on the quoted spot rate for 

each time interval. The forward rate can be used to calculate future values and the rate that is 

earned or charged between time periods. The formula used to calculate the forward rate 

between two time intervals is:  

(1 + 𝑟𝑡𝑦)
𝑡
(1 + 𝑓𝑡𝑦,𝑢𝑦)

𝑢−𝑡
= (1 + 𝑟𝑢𝑦)

𝑢
 

Where 𝑟𝑡𝑦 is the spot rate of the bond at time 𝑡𝑦, t is the time of one bond, u is the time of the 

other bond, and 𝑓𝑡𝑦,𝑢𝑦 is the forward rate between the two time periods.  

 

Example 5.5:  

  

Calculate the forward rate between year 1 and 2 of a bond that has a one-year spot rate of 2% 

and a two-year spot rate of 4%.  

 

Solution:  

 

Using the formula that calculates the forward rate: 

(1.02)1(1 + 𝑓1𝑦,2𝑦)
1

= (1.04)1 

     Therefore, 𝑓1𝑦,2𝑦 = 0.01961 = 1.961 
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Section 6: Derivatives and Options 

Other financial instruments to include in a portfolio are derivatives and options. A derivative is a 

financial contract that gets its value from an underlying asset. Options are one specific type of 

derivative. Other categories include swaps, future contracts, and forward contracts. There are 

several reasons to choose to include derivatives in a portfolio, and investing in derivatives will 

further diversify and decrease the assumed risk of investing.  

a) Derivatives, underlying assets 

A derivative is a contract which specifies the right or obligation to receive or deliver a certain 

asset for a specified price. The value of the derivative depends on the value of another asset. 

The asset on which the price of the derivative depends is known as the underlying asset. 

Investors may choose to enter into the derivative markets for risk management, speculation, 

to reduce transaction costs, and potential arbitrage opportunities. Derivatives are typically 

traded on commodities, stock, stock indexes, currency exchange rates, and interest rates
22

.  

b) Short selling 

If an investor is buying an asset, he or she is said to have a long position on the stock. On the 

other hand, if the investor is selling an asset, he or she has a short position. Another method 

to use when purchasing stocks is short selling. When selling short, the investor believes that 

the stock price is going to decrease. This is one method that can be used to make a profit 

when the stock market is decreasing. To sell short a stock the investor must first borrow x 

number of shares, which will be returned at a specified date. The investor will then sell the 

shares at the current stock price 𝑆0. After selling the borrowed shares, the investor waits until 

the stock price drops at which point he or she will purchase the shares at the new price. Since 

the stock price dropped, the investor does not need to use all of the proceeds from selling the 

borrowed stock, and thus has made a profit. At this point, the investor must return the shares 

to the firm or individual that he or she initially borrowed from. However, if the investor is 

wrong in his or her assumption that the stock price will fall, he or she will suffer a loss from 

the short position. If the stock price instead increases, the investor will need to purchase the 

stock at the higher price in order to return the shares to the lending firm or individual. In this 

instance, he or she must use the proceeds received from selling the shares and additional 

money of his or her own to purchase the more expensive stock.  

Example 6.1: 

Ruthanne sold short 20 shares of Disney stock priced at $106 with a transaction cost of $2 

per share. She was correct in her bet that the share price would decrease, and she closes her 
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short position when Disney stock is selling for $100. What is the profit of Ruthanne’s 

investment? 

Solution:  

Ruthanne’s initial proceeds from selling the borrowed stock are 20 ∗ 106 = 2120 and the 

total transaction cost is 20 ∗ 2 = 40. She purchased stock for 20 ∗ 100 = 2000 when the 

stock price dropped. Therefore, Ruthanne’s total profit is 2120 − 2000 − 40 = $80.  

c) Ask price, bid price, spread 

The bid price is the price that the broker is willing to purchase the security and is therefore 

the selling price for an investor. The ask price is the price at which a broker is willing to sell 

a security. The ask price is the buying price paid by an investor. The difference in these two 

amounts is the bid-ask spread. This spread represents the broker’s profit from the transaction. 

Typically the ask price is higher than the bid price so the broker will make a profit. The bid-

ask spread can vary widely depending on the type of security and the market. The bid-ask 

spread can widen significantly in periods of market turmoil or during periods of illiquidity
23

.  

d) Maintenance margin, margin call 

One way that investors can purchase stocks is by borrowing money and buying on margin. 

Typically the buyer borrows a portion of the price of the stock from a broker and contributes 

the remaining amount. The amount that the buyer must contribute is referred to as the initial 

margin requirement. Brokers frequently require a certain percentage contribution from the 

buyer when purchasing stocks on margin. The minimum amount of equity that must be 

maintained in a margin account is the maintenance margin. If the amount of equity dips 

below the maintenance margin, then the investor is at risk for a margin call. In this case, the 

investor must increase his or her equity in the account by contributing money to the 

account
24

.  

e) Put option 

A put option is a financial instrument that grants the purchaser the right, but not the 

obligation, to sell a stock at a particular price for a specified amount of time. The price at 

which the put option can be sold at is known as the strike price. The length of time that the 

put option is valid for is the time to maturity, or expiration. There are two different types of 

put options: European and American. A European option can be exercised only at expiration 

whereas an American option can be exercised at any time up until maturity.  
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If the strike price is higher than the market price, then the put option should be exercised. 

However, if the strike price is lower than the market price, then the put option should not be 

exercised. Therefore, the payoff of a European put option is given by the equation:            

(𝐾 − 𝑆(𝑇))+ 

Where K is the strike price and 𝑆(𝑇) is the stock price at time T. To calculate the profit of 

investing in a put option, simply subtract the cost of purchasing the put option from the 

payoff.  

To price a European put option, we can use either the put-call parity, or set up a replicating 

portfolio and use the binomial pricing model. If we know the price of a call on the same 

stock with the same strike price and expiration, we should use put-call parity as it is more 

efficient than the binomial pricing model. The put-call parity relates the price of the 

European call option, European put option, and the future value of the strike price if the 

money were invested in an interest bearing account. The formula for put-call parity is: 

𝐶 − 𝑃 = 𝑆0 −
𝐾

(1+𝑟)𝑇   or  𝐶 − 𝑃 = 𝑆0 − 𝐾𝑒−𝑟𝑇if interest is compounded continuously, 

Where  C is the price of the call option, P is the price of the put option, 𝑆0 is the initial stock 

price, K is the strike price, r is the interest rate, and T is the maturity.  

If we do not have the price of the call option, we will need to use the binomial pricing model 

to price the put option. The binomial pricing model makes the unrealistic assumption that the 

price of the underlying stock will either increase by an up factor or decrease by a down 

factor. In practice, there are infinitely many options for which the stock price to change, but 

this simplified model is still used to approximate the fair price of a put option. First, we must 

construct a “tree” that follows the behavior of the underlying stock. If we are given the initial 

stock price 𝑆0, the up factor u, and the down factor d, then the stock “tree” is as follows: 

 

The pattern can continue for more time periods, but for simplicity, we will stick to two time 

periods, or a maturity of 𝑇 = 2. Next, we must calculate the probability of the stock price 

increasing by the up factor or decreasing by the down factor. Given the interest rate r along 
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with the up and down factors, the probability of the stock price increase is given by the 

equation: 

𝑝 =
(1 + 𝑟) − 𝑑

𝑢 − 𝑑
 

And to calculate the probability of the stock price decreasing, simply substitute the resulting 

probability into the equation 1 − 𝑝.  

Now that we have the probabilities and resulting stock prices, we will use the payoff formula 

for a put option and work our way backwards to construct the “tree” for our put option. First, 

we must calculate the payoff of the put option at maturity for the various outcomes of the 

stock price. Then, we calculate the expected value of the payoffs using the two probabilities 

we calculated earlier. The put option “tree” is as follows: 

 

Example 6.2:  

Meghan purchased a put option with a strike price of $52 and a maturity of two months. The 

stock is currently trading for $50. If the stock prices increases to $54 in two months, what is 

the payoff of the put option? What is the fair price for this put option if the up factor is 1.2, 

the down factor is 0.8, and the interest rate is 2%? 

Solution:  

The payoff of the put option if the stock price increases to $54 is: 

(𝐾 − 𝑆(𝑇))+ = (52 − 54)+ = 0 

To calculate the fair price for this put option, we must first construct the stock price “tree” 
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Next, we calculate the probabilities, 𝑝 =
(1+𝑟)−𝑑

𝑢−𝑑
=

1.02−0.8

1.2−0.8
= 0.55 and 

 (1 − 𝑝) = (1 − 0.55) = 0.45 

Finally, we will construct the put option “tree” 

 

Therefore, the fair price for this put option according to the binomial pricing model is $6.03.  

f) Call option 

A call option is a financial instrument that grants the purchaser the right, but not the 

obligation, to buy a stock at a particular price for a specified amount of time. Similar to a put 

option, a call option has a strike price and expiration and there are both American and 

European call options that follow the same regulations as put options.  

If the strike price is higher than the market price, the call option should not be exercised. 

However, if the strike price is below the market price, the call option should be exercised. 

Therefore, the payoff of a call option is given by the equation: 

(𝑆(𝑇) − 𝐾)+ 

Where K is the strike price and 𝑆(𝑇) is the stock price at time T. Similar to a put option, to 

calculate the profit of purchasing a call option, simply subtract the price of the option from 

the payoff.  
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Identical to a put option, we can use either put-call parity or the binomial pricing model to 

calculate the fair price of a call option. The only difference in using the binomial pricing 

model is the initial step of constructing the option “tree”. Instead of using the formula for the 

payoff of a put option, we will use the formula for the payoff of a call option as stated above. 

Example 6.3:  

What is the payoff of a call option with strike price $52 if the stock price increases to $54 at 

maturity two months? What is the fair price of the call option if the up factor is 1.2, the down 

factor is 0.8, the interest rate is 2% compounded continuously, and the current stock price is 

$50? 

Solution: 

If the stock price increases to $54, the payoff of the call is (𝑆(𝑇) − 𝐾)+ = (54 − 52)+ = 2. 

Since we already know that the put option with the same strike price and maturity trades at 

$6.03, we can use put-call parity to calculate the fair price of the call option.  

𝐶 − 𝑃 = 𝑆0 − 𝐾𝑒−𝑟𝑇 

𝐶 − 6.03 = 50 − 52𝑒−0.2(2) 

𝐶 = $21.17 

 

g) Moneyness 

A financial instrument is said to be either in the money, out of the money, or at the money 

depending on the profitability of the investment. If the investment is profitable, it is in the 

money. While an investment that loses value is said to be out of the money and an investment 

that does not have any loss or gain is at the money. A call option is in the money if the stock 

price is higher than the strike price while a put option is in the money if the stock price is 

lower than the strike price. Therefore, when purchasing call option, the investor is bullish 

about the position and believes that the stock price will increase whereas the purchaser of a 

put option is bearish and is betting that the stock price will decrease.  
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Section 7: Forward Contracts, Futures, and Swaps 

Forward contracts, futures, and swaps are other types of derivatives that are commonly used for 

hedging and speculation. There are several ways in which buyers and sellers of these derivatives 

can profit from the transactions, and investing in such derivatives can enhance a portfolio 

greatly.  

a) Forward contract 

A forward contract is a customized agreement between two parties to buy or sell an asset at a 

specified price on a future date. Since this contract is customizable, it is particularly useful 

when hedging. The contract can be constructed for a specific commodity, amount, and 

delivery date. The price of the asset in the forward contract is referred to as the forward price. 

Similar to options and other types of derivatives, there is typically an asset on which the 

value of the forward contract is based, and is known as the underlying asset. The delivery 

date is known as the expiration date. For example, a forward contract of 100 bushels of wheat 

to be delivered three years from now has an underlying asset of wheat, quantity of 100 

bushels, and an expiration of three years.  

 A traditional forward contract requires no money up front, other than commission, and the 

money is delivered at expiration. The current price of the asset when the contract is entered is 

known as the spot price. The difference between the spot price and the forward price is the 

forward premium or forward discount. If the forward price is higher than the spot price, there 

exists a forward premium. On the other hand, if the forward price is lower than the spot price, 

the asset is forwarded at a discount. The buyer of the asset in a forward contract is called the 

long forward while the seller of the asset is the short forward. The profits of the long and the 

short in a forward contract are opposite of each other. Therefore, a forward contract is a zero-

sum game
25

.  

Forward contracts are not traded on a centralized exchange and are therefore referred to as 

over-the-counter financial instruments. The ease at which these contracts can be created due 

to the over-the-counter nature increases the convenience of this financial instrument, but also 

increases the default risk of the investment. As such, forward contracts are not readily 

available to retail investors as other financial instruments
26

.  
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Example 7.1:  

Bob enters into a forward contract with Fred to purchase 100 ounces of silver in one year at 

$18 per ounce. What are Bob and Fred’s payoffs if the spot price of the silver is $15, $17, 

$20? 

Solution:  

Bob’s payoff chart: 

Spot Price 15 17 20 

Payoff 100(-2) = -200 100(-1) = -100 100(2) = 200 

 

Fred’s payoff chart: 

Spot Price 15 17 20 

Payoff 100(2) = 200 100(1) = 100 100(-2) = -200 

 

b) Futures contract 

A futures contract is a legal agreement made on a trading floor of a futures exchange, to buy 

or sell a commodity at a predetermined price at a specific time in the future. Unlike forward 

contracts, futures contracts are standardized, and thus can be traded on a futures exchange. 

The largest future exchanges are the Chicago Mercantile Exchange, the Chicago Board of 

Trades, the International Petroleum Exchange of London, and the New York Mercantile 

Exchange
27

.  

In addition to outlining the quantity of the commodity being traded, a futures contract can 

also include a description of the quality of the commodity. The terms futures and futures 

contract are typically used interchangeably, and mean virtually the same thing.  

Futures contracts are used either for hedging or speculating purposes. Producers and 

purchasers of an underlying asset hedge or guarantee the future price of the commodity. On 

the other hand, portfolio managers or traders tend to bet on the price movements of the 

underlying assets. There are two risks associated with a futures contract which include 

market risk and credit risk. The market risk refers to the volatility of the price of the asset, 

while the credit risk is related to the solvency of the partners within the contract. Market risk 

is a non-diversifiable risk, meaning that it cannot be eliminated. However, credit risk can be 

minimized by requiring a deposit to an account known as a margin account. The deposit 

amount is the initial margin which is determined by the exchange. If there is a loss on the 
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future, the investor’s broker transfers that amount from the investor’s margin account to the 

clearinghouse. If there is a profit, the clearinghouse transfers the amount to the investor’s 

margin account. The value of the investor’s margin account after settlement is given by the 

formula:  

𝑀
𝑡−

1
365

𝑒
𝑟

365 + 𝑁 (𝑆𝑡 − 𝑆
𝑡−

1
365

) 

Where 𝑀
𝑡−

1

365

 is the previous day’s balance of the margin account, r is the interest rate, N is 

the nominal amount, 𝑆𝑡 is the current price, and 𝑆
𝑡−

1

365

 is the previous day’s price.  

Unlike forward contracts which are typically made on commodities, futures contracts can be 

made on a number of underlying assets including stocks market indices, currency pairs, 

interest rates, and just about every commodity produced
28

.  

Example 7.2:  

On January 1, 2017, Molly entered a long futures contract for 200 barrels of crude oil priced 

at $55. The margin account is 35% of the market value of the futures’ underlying asset. The 

annual continuously compounded interest rate is 4%. On January 2, 2017, the price decreases 

to $54 per barrel. What is the balance of Molly’s margin account after the settlement? 

Solution:  

The initial balance in Molly’s margin account is: 

(200)(0.35)(55) = 3850 

On January 2, the value of Molly’s margin account is: 

𝑀
𝑡−

1
365

𝑒
𝑟

365 + 𝑁 (𝑆𝑡 − 𝑆
𝑡−

1
365

) 

3850𝑒
0.04
365 + 200(54 − 55) = $3650.42 

c) Swap 

A swap is a derivative contract in which two similar financial instruments that behave 

differently are exchanged. The two instruments being exchanged are called the legs of the 

swap. Two common types of swaps include commodities, and interest rate swap consisting of 
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a fixed rate in exchange for an adjustable or variable rate
29

. Typically, a swap includes a 

quantity that is known in advance, referred to as the fixed leg, and a quantity that is uncertain 

or unknown in advance, known as the floating leg. A swap will often times include an 

exchange of payments over time
30

.  

Similar to forward contracts, swaps do not trade on exchanges, but occur between business 

and financial institutions. Swaps are traded over-the-counter, and are not typically used by 

retail investors.  

Commodity swaps involve the exchange of a floating commodity price for a set price over an 

agreed-upon term. Commodity swaps frequently include crude oil since oil prices are highly 

volatile; this type of swap is typically used to hedge against the price of a commodity. The 

floating-leg component of the swap is tied to the market price of the underlying commodity. 

The fixed-leg component is dependent on the contract agreement. In general, the floating-leg 

component is held by the consumer of the commodity willing to pay the fixed-price, and the 

fixed-leg is held by the producer who agrees to pay a floating rate. Therefore, the consumer 

gets a guaranteed price and the producer is protected from a decline in the price of the 

commodity
31

.  

Example 7.3: 

ABC Corporation needs to purchase 1,000 barrels of crude oil per year for the next three 

years. The forward prices for delivery on oil in one year, two years, and three years are $49, 

$50, and $51 per barrel respectively. The one year, two year, and three-year spot rates are 

1.5%, 2%, and 2.5%. Calculate the entire cost upfront of the oil and the cost of paying each 

year upon delivery.  

Solution: 

The upfront cost per barrel is: 

49

(1 + 0.015)
+

50

(1 + 0.02)2
+

51

(1 + 0.025)3
= $143.69 

Thus, by paying $143.69(1000) = $143,692.87 today, ABC Corporation is guaranteed 

1,000 barrels of crude oil per year for three years. However, there is the risk that the oil will 

not be delivered so ABC Corporation may decide to make three payments, one each year as 
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the barrels are delivered. The yearly cost per barrel X is calculated with the following 

equation: 

143.69 =
𝑋

(1 + 0.015)
+

𝑋

(1 + 0.02)2
+

𝑋

(1 + 0.025)3
 

Therefore, by using computer software to solve for X,  𝑋 = $49.58 is the barrel cost that 

ABC Corporation must pay each year.  

Interest rate swaps are slightly more complex than commodity swaps, as interest rates can be 

directly impacted by the Federal Reserve
32

. In an interest rate swap, the parties exchange 

cash flows based on a theoretical principal amount in order to hedge against risk or speculate 

changes in interest rates. The London Interbank Office Rate (LIBOR) is frequently used in 

interest rate swap agreements. This rate is published daily by the British Bankers Association 

and is based on rates that large international banks in London offer each other. The interest 

rate used in an interest rate swap is the most recent value of the LIBOR plus a margin
33

.  

Example 7.4:  

ABC Company is willing to pay XYZ Incorporated an annual rate of LIBOR plus 1.4% on a 

theoretical principal of $750,000 for four years. In exchange XYZ pays ABC a fixed annual 

rate of 5% on the theoretical principal of $750,000 for four years. The LIBOR rate is 

currently 1.7%. Determine what happens if the LIBOR rates increase by 0.5% per year and 

2.5% per year.  

Note: XYZ Inc. benefits from the swap if rates rise significantly over the next four years and 

ABC Company benefits if rates fall, stay stagnant, or rise gradually.  

Solution:  

If LIBOR rises by 0.5% per year XYZ Inc.’s total interest payments to its bond holders over 

the four-year period are: 

750000(4 ∗ 0.014 + 0.017 + 0.022 + 0.027 + 0.032) = $115,500 

If the LIBOR rate had remained flat, the total interest payments would have been: 

750000(4 ∗ 0.014 + 0.017) = $54,750 

Therefore, XYZ must pay out an additional 115,500 − 54,750 = $60,750. 
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XYZ Inc. pays ABC Company 750000 ∗ 4 ∗ 0.05 = $150,000 and receives $115,500 in 

return. Therefore, XYZ’s net loss on the swap is $34,500.  

If LIBOR instead rises by 2.5% per year, XYZ Inc.’s total interest payments to its bond 

holders over the four-year period are: 

750000(4 ∗ 0.014 + 0.017 + 0.042 + 0.067 + 0.092) = $205,500 

ABC pays this amount to XYZ and XYZ pays $150,000 in return. Thus, XYZ’s net gain on 

the swap is $55,500.  
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