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December 17, 2023

Abstract

This work reports on uses of the magnetic vector potential A for
understanding, visualizing and teaching electromagnetic phenomena.
The teaching benefits of this work include examples of numerical mod-
eling that facilitate understanding, and complemenatary visualization
approaches. To facilitate discussion of A we first include a brief section
looking at ¢ in a system comprised of two hollow, positively charged
spheres, demonstrating that the work required to bring the two spheres
close together Q¢ is equal to change in the total integrated electric
field energy density. We then introduce a system comprised of a hol-
low, positively charged sphere interacting with two parallel, current
carrying wires, for which A yiyes is determined as a function of position.
Two calculations of the field momentum of the system are compared
and shown to be equal: the first is QAyires, the second is the integra-
tion over all space of the interaction momentum density egE x B. We
conclude by analyzing the trajectory of () near the wires, establishing
a visual connection between particle motion and the magnetic vector
potentials sourced by the wires, including a discussion of relativistic
implications.



1 Introduction

The study, calculation, and visualization of electromagnetic fields are of fun-
damental importance practically, for basic research, and in teaching. The
electric field E and the magnetic field B are generally considered the pri-
mary fields, and knowing these we can calculate the forces on moving charges
via: F = ¢E 4 ¢(v x B). Another tool to improve understanding of electro-
magnetic fields is the use of the electric scalar potential ¢ and the magnetic
vector potential A. These can be related to E and B via the relations:
E=-V¢—-0A/0t and B=V x A.

While most workers agree on the validity of ¢ as a standalone field quan-
tity, some find the usefulness of A to be limited to being a mathematical
construct used to find the “real” field B. Others point out that there are
phenomena such as the Aharonov-Bohm effect [1] that can be understood
classically using a line integral of A in a region where A exists and B is
zero. A significant number of workers emphasize the fundamental impor-
tance and practical usefulness of the potentials [2, 3, 4, 5, 6, 8, 7, 9, 10].
Emil Konopinski in particular was very passionate on this topic [5, 6], and
his work inspired much of the work reported in this paper. That said, in
electromagnetics textbooks A is usually considered as a calculation tool —
Semon and Taylor provide interesting historical context for this point [11].

The intention of the work reported in this article is to expand on earlier
work demonstrating that A can serve as a very useful, complementary lens for
the understanding of electromagnetics, aided in particular by modern com-
putational methods. In Section II we examine a basic, undergraduate-level
system comprised of two hollow, positively charged spheres, and compare
two approaches for determining the stored electric field energy in the system
- we include this section as it lays the groundwork for the following sections.
In Section III we introduce a two-wire system and calculate the field mo-
mentum resulting from the interaction between a hollow, charged sphere @
and the wires. In Section IV we consider a dynamic case where () is in mo-
tion with respect to the wires. We conclude with a discussion of relativistic
considerations.



2 Equivalence of ()¢ and stored electric field
energy

In this section we compare two approaches for determining the stored electric
field energy due to the interaction of two hollow, positively charged spheres
@1 and )9, with ), located at the origin. The first approach to evaluating
the stored electric field energy is to determine the work needed to bring @)
to a position r relative to )1 — this is an undergraduate level calculation. We
compare this standard result with the less common approach of integrating
the interaction electric field energy due to the two spheres over all space.

The potential as a function of position due to a hollow sphere of charge
@)1 centered at the origin is given by ¢;(r) = @1 /(4meg|r|), where r is outside
of the sphere. The work needed to bring (), from infinity to a position r is W
= Q2¢1(r) = Q2Q1/(4mep|r]). The work added to the system is considered
to be potential energy stored as additional electric field energy [2, 12]. We
will utilize Cartesian coordinates throughout, and so r = iz +jy +kz. As
a concrete example we chose Q; and Q, as 1.0 x 107!2 C, with radii of 1.0
mm. In this work we use Mathematica to perform the numerical modeling
and generate the plots.

The second calculation approach is to first find the total electric field
energy density, Wia1(r), as a function of position. We find wiar(r) as
%EOEtotal(r) : Etotal(r)a where Etotal(r) - El(r) + E2 (I‘)Z

Wiotal () = %Go[El(r)z +2E;(r) - Ez(r) + Ea(r)?] (1)

The first and third terms are the energy densities due to @)1 and @Qs, re-
spectively, and the cross term in the middle is the energy density due to the
interaction of the two spheres, which we denote as wi,(r).

In figure 1, wiy(r) is shown for the case where Qs is located at 4.0 mm.
Note that the interaction energy is negative midway between the spheres
because Eqa is zero there. Above Qo or below @1, Ei(r) and Ey(r) add,
and so win(r) is positive there.

To find the total interaction energy W (z() associated with Qs brought
from infinity to a given location xy on the z-axis, we integrate the interaction
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Figure 1: Interaction energy density, wiy(r), near @Q; and Q2. Also shown
are the Ey.1(r) vectors, except inside the spheres. As the interior of spheres
are hollow, wiy(r) evaluates to zero there.

energy density over all space:

W(zy) = /Vwint(r)dv =€ /V Ei(r) - Ex(r) dV (2)

We have carried out calculations for o = 4 to 20 mm for both methods. We
find the calculated results to be in excellent agreement as they must be — for
each value of z, the two approaches differ by no more than 1.0x107% %.

The equivalence of Q¢ (z) and [, Wine(r) dV provides a complementary
lens for understanding the interaction between a charge and a preexisting
electric potential. Although the units of ¢ are usually given as V, an equiva-
lent unit is J/C. Q¢ is then J, and this point quantity is a surrogate for the
integrated win(r). So while E(r), for which the dimension can be given as
N/C, represents the force per unit charge at r, ¢(r) in J/C represents the
stored electric field energy per unit charge at r. A plot of the interaction
energy as a function of position as in figure 1 provides another way for a
student to get a feeling for the underlying physics. Although still abstract,
integrating the interaction energy density as a function of position is more
“visualizable” than simply stating that the potential energy is Q¢(r). We
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express the equivalency of the two approaches as:

Qo(r) = /11 Wing (r') dV’ (3)

3 Equivalence of QA and stored electromag-
netic field momentum

In this section we compare the point quantity QQA(r) which has units of mo-
mentum with the results of integrating the corresponding momentum density
of the fields. The model system utilized is comprised of two parallel, hollow,
current carrying wires and a hollow, positively charged sphere (), where we
consider the interaction between ) and A(r) due to the wires. As a con-
crete example we choose z-directed wires located in the xz plane, passing
through Zyie = +/- 5.0 mm, with radii 0.5 mm, and with I = +/-100.0 A.
An advantage of this two-wire system is that it allows a natural choice for
A(r) = 0, which is the z-axis. In our simplified teaching model we assume
that the voltage is equal along and between the wires, and also that () does
not induce significant image charges, so that there is no net charge on the
wires. In a real system there are net charges on the wires, although mod-
eling these is beyond the scope of this paper, and we believe that keeping
the model simple facilitates teaching. The geometry used in this and the
following section is shown in figure 2.

The sphere @ is stationary at rog = ixo, and discrete calculations are made
over a range of values of xy. We use two methods to evaluate the interaction
between () and the vector potential due to the wires: the first method is to
find A(r) directly, from which the associated field momentum is calculated
as P = QA(r) as shown in [6]. The second method is to integrate the field
momentum density y(E x B) throughout the volume of interaction.

To find P = QA(r) we first find B(r), and then determine A(r). First
we note that A(r) must be z-directed, as can be seen from equation 4 below
which is valid in the nonrelativistic regime under the Coulomb gauge, V-A =

0: .
Alr) = — &) gy ()

Amepe? Jyo v — 1
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Figure 2: Shown is the geometry used for Sections III and IV. The currents
on the two wires are equal in magnitude and opposite in direction.

In our model system the wires are parallel to the z-axis, so that j is z-directed
and in turn A must have the form A(r) = kA, (r). We note that in this two-
wire system with equal and opposite currents on the two wires the magnitude
of A — 0 as r — oco. Due to symmetry, A = 0 on the z-axis.

With charge @ located on the x-axis in this first method for determining
P we only need B(r) in the zz plane. Given the assumption that the wires
are effectively infinite in the z-direction, in the xz plane B(r) will depend
only on z and will have a y-component only, so that B(r) = jBy(x). Using
Ampere’s law, the combined magnetic field from the two wires in our model
system becomes:

B,(z) = ! ! (5)

T 2160 (T — Tyire)  2T€0C3(T + Tire)

Because B only has a y-component, and A only has a z-component, B =
V x A reduces to: oA
iBy(z) = —j——. 6
3B, =3 (6
Using equation 6, we can now integrate from x = 0 out to the desired value
of zg to determine A,(xy). Because A, = 0 on the z-axis the constant of




integration in equation 7 will evaluate to zero. We proceed as follows:

Zo o

Au(zo) = / aAaZf/) da! — / _B,(«/) da'. (1)

0 0

Knowing B, (z') from equation 5, we can readily find A, (z) using equation 7.
This approach to finding A, (xg) is analogous to integrating E(r) to find ¢(r).
Since here A(r) has only a z-component, with @) located at ro = iz, the total
field momentum becomes P = RPZ = RQAZ(xO). We present the results for
P below, along with the results calculated via a volume integration.

The second method for determining P uses the momentum density of the
electromagnetic fields. The Poynting vector S = (E x B)/ug is familiar as
the power density — the rate at which energy is transported per unit surface,
with units Js~'m~2. Following Griffiths, (see [12], 8.2.2), scaling S by 1/c¢?
yields the field momentum density €(E x B), expressed as g. The total field
momentum stored in a volume is found as P = fv g dV. In our system ()
is stationary and so does not have a magnetic field, and as the wires do not
have an electric field then g is only due to the interaction between wires and
Q. In figure 3, g is plotted for the case where the closer edge of the sphere
is 0.5 mm above the edge of the upper wire. Calculated g is highest directly
between the wire and the sphere, and is in the negative z-direction there.
When we integrate g over all space, however, the net result for P is positive
z-directed for sphere locations () above the wire.

The calculation results for QA(r) and P = [, g dV are shown in figure 4.
The agreement is excellent as it must be — here they are within 0.004% or
better. This agreement parallels the equivalence of Q¢(r) to [i, Win(r) dV as
discussed in Section II. This equivalency can be expressed as:

oAt = [ gav (3)

Although we are considering a series of stationary locations for @), the sphere
will experience experience a -z-directed magnetic force as it is moved from one
location to the next. To move the sphere perpendicularly towards the wires
positive z-directed field momentum must be added to the system, analogous
to needing to add stored electric field energy in Section 2. Our example is
similar to [7], except they consider stationary @) near a wire, and slowly

7
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Figure 3: Plotted are the momentum density vectors g surrounding the
sphere: their direction is represented by the arrows, their magnitude is rep-
resented by the color scale. |g| is greatest directly between the wire and the
sphere, and zero inside the sphere since E = 0 there. The top of the wire is
at x = 5.5 mm.

increase the current from 0, needing to add field momentum to hold @ in
place.

4 Particle Trajectory

In this section we consider the trajectory of a small sphere of charge () near
a two-wire system having the same geometry as in Section 3. Here we regard
the system as closed, so that the total momentum of the system must be
conserved throughout the trajectory. The mass of ) as well as its initial
velocity and position are chosen such that the sphere remains near the wires.
The wire masses are assumed infinite in comparison with mg. We discuss
visualization and teaching opportunities related to this dynamic system and
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Figure 4: Comparison of two methods to calculate P associated with () over
a range of xy values. QA(xy) is P calculated directly using the value of
A(z)[5]. P = [, g dV is the integrated field momentum density. Plotted

are the results for P,, the only nonzero component of P.

conclude with relativistic considerations.

To facilite demonstration of the balance between field and particle mo-
menta, we choose initial values of v = 20.0k m/s and r = 20.0i mm and also
choose mg = 5.0 x 107 kg and Q = 2.0 x 107'2 C. Because B(r) = jB,(r)
in the zz plane, Fyagnetic = Q[V X jBy(r)}, and Fagnetic will always be per-
pendicular to j. Knowing that the y-component of the force is always zero
in the zz plane, then given an initial velocity in the z-direction and an ini-
tial location in the xz plane, () remains in the zz plane and v, = 0 always.
Therefore:

Fmagnetic(r) = QV X jBy(r) = RQUxBy(r) - iQUsz(r)' (9>

The trajectory is simulated using a timestep approach. With a = Fagnetic/ M0,
we update r, v, and a after each timestep, At. Details of the simulation are
included in publicly downloadable Mathematica notebooks [14]. The results
for the trajectory are shown in figure 5. The vectors represent the instanta-
neous velocity at various positions. The circle at position (1) represents the
starting point, at which x = 20.0 mm, v, = 20.0 m/s and v, = 0. Initially
F agnetic 1s in the -z direction, so () is accelerated towards the wire. As v,
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becomes increasingly negative, Fyagnetic becomes stronger in the -z direction,
such that by the time the particle reaches position (2) v, = 0 and the velocity
is only in the -z direction. At closer positions to the wire, v, becomes in-
creasingly negative while v, increases such that by position (3) v, = 0. The
particle is then repelled upward to the top of the trajectory, after which the
pattern repeats. In this system the sphere spends less time near the wire,
since the magnetic force is stronger there. For the sphere to be repelled at
point (3) there must be -v, there, which is why we see the “loop” at the
bottom of the trajectory — we see this as well with different initial +v,.

20

15

X (mm)

10

z (mm)

Figure 5: The particle trajectory is shown in the rest frame of the wires,
which carry + 100 A. The top wire is shown, and the wires exert a force
F nagnetic on Q. Because Fjectric = 0 the kinetic energy is constant and |v
is constant.

We now consider the field momentum P(r, ¢) and the sphere’s momentum
p(r,t) = mgv during the course of the trajectory. In Section 3 we found the
field momentum associated with a sphere of charge to be P = QA(r). In
this section unlike in Section 3, we consider a closed system, and so the
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total system momentum, here including the wires, the sphere, and the field
momentum, is constant. The “generalized momentum” includes only those
quantities parts of the momentum directly associated with the particle -
this is discussed in detail by Semon and Taylor [11], who go into detail for
a Langrangian approach as well. The generalized momentum is expressed
as [6, 11]:

%(p+P) = 0. (10)

In the present case, as in Section III, the currents that source A are z
directed and so A(r) = kA, (r). We can write the z component of equation 10
as:

d(vaz + QAz)
dt

=0 (11)

From equation (11) we see that while the z-components of the particle and
field momenta vary with time and position, their sum is constant. In this case
we find the generalized momentum - those parts of the momentum directly
associated with the particle — is conserved. Basically there is an ongoing
exchange between mgu, and P,(r,t) throughout the trajectory - the fields
act a a reservoir for z-directed momentum. Using our approach from Section
11T we determine A (r) which in this case is kA, (r,t), and from which the z-
component of the field momentum is found as P,(r,t) = QA.(r,t). Because
y = 0 and there is no variation in the z-direction then A depends only on =z.
The z-component of the momentum of the sphere is p, = mguv,(r,t). The 2-
components of the momenta of the fields and of the sphere, along with their
sum, are shown in figure 6. Referring to figure 4 note that as the sphere
moves from position (1) to position (3) in the trajectory (or from 20.0 to
about 2.0 mm from the wire), the magnitude of @A, remains positive and
roughly triples. At the same time p, decreases to the point where it switches
direction and becomes negative, which is necessary for the total z-directed
momentum to be conserved.

In the z-direction, however, the generalized momentum is not conserved,
as there is no x-directed field momentum to balance changes in mv,. In this
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case, because the mass of the wires is assumed infinite in comparison to my,
the wires can absorb changes in p, and remain effectively stationary, so that
the total system momentum still conserved in the z-direction even though
P,(r,t) = 0. By contrast, in the z-direction the momentum balance with p,
is fully accounted for by P,(r,t), or to put it in another way the z-component
of the generalized momentum is conserved.

as
__ 6.
(2
E 5.’
_é) 4.¢
SN
o 2.
x 1r
« O.f
1
-2 mQVzi
0. 0.5 1.
t (ms)

Figure 6: Shown are the z-component of the particle momentum, the field
momentum, and their sum as functions of time. This sum is constant, in
agreement with theory.

Turning to relativistic considerations, a classic example (see, for example
2, 13]) is to look at the magnetic force experienced by a charge @ traveling
parallel to a current carrying wire, for example at locations (1) and (3) in
figure 5. As the wires are charge neutral, there is no electric field in the rest
frame of the wires. However, in the rest frame of () there is a linear charge
density on the wires that exerts a coulombic force on @), while Fy,agnetic = 0:
often used as a demonstration of the underlying connection between E and

B.

We find that the relation E(r) = —=V¢(r) — 0A(r)/0t multiplied by @ so
that it becomes an expression of electric force is helpful in this discussion:

Felectric = QE(I‘) = _V[Q¢(r)] - w (12>

At location (1), consider the rest frame of () where the wires, now moving

12



parallel to () in the z-direction, are a constant distance from @, and have a
linear charge density. Because the distance between the wires and () is not
changing, A is constant in this case. Therefore only the first term on the RHS
of Eq. (12) is nonzero, and the force is purely coulombic. Given that Q¢(r) is
the total interaction energy Wiy, and at (1) Fepeetric = —V[Q¢(r)] only, the
force there is due to a gradient in W: Fgecrric = —VW. It is interesting to
note that even when @ is travelling at less than 2.0 x 10~"¢, we must consider
relativistic length transformations to understand the coulombic force on @
in its rest frame.

What about location (2) in figure 5 where @ is traveling directly towards
the wire? In this case, in the rest frame of () there is no length contraction
resulting in a net linear charge density on the wires, however the wire is now
traveling towards Q with v = +iv, and so OA /Ot # 0. In the rest frame of
@ the force on @ can only be electric, however this time Eq. (12) reduces to
Fecetric = —0[QA(r)]/0t, and the force is purely inductive.

A complementary way to understand the force acting on the sphere at
location (2) is consider the momentum balance between field and sphere. In
Section 3 we found QA(r) equals the system’s field momentum, P. Here
A = kA, 50 Foeetric = —k 0QA, /0t = —k OP,/0t. Note that the sign of
the force is correct, as it must be: at location (2) @ is traveling towards the
wire with v = —iv,, and so QA, and the associated field momentum P, are
increasingly positive. For the total z-directed momentum to be conserved (as
shown in figure 6), at point (2) the z-component of the particle momentum
must become increasingly negative, so the force on ¢ must be in the —k
direction. This agrees with the direction of v x B which is —iv, X JB
—kvay. We note that the electromagnetic interaction at point (1) differs
from that at point (2), which may not be noticed when considering E from the
perspective of the Lorentz force equation. In addition at (2) the the inductive
force as discussed here may be easier for a student to understand than when
using B: instead of needing a curl to find B and then a cross product to find
the force, J and A are in the same direction and then the force is k QA /L.
The point that it can be helpful for student comprehension to avoid the curl
is discussed at some length in [11].
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5 Conclusions

In this paper we present results of our work looking at the use of A as
complementary to the use of E and B in visualizing and understanding elec-
tromagnetics. In Section 2, in order to set the framework for the subsequent
sections, we compare the work needed to bring two charged spheres together,
(Q2¢ — a standard undergraduate calculation — with the interaction energy
integrated over the entire field, W = fv wint dV. We use an analagous ap-
proach in Section 3, this time first showing that momentum equal to QA(r)
must be added to the system when bringing a charged sphere towards two
current carrying wires, and then comparing that result with the interaction
momentum density integrated over all space, P = fv gdV. We find words
from Emil Konopinski provide an appropriate summary of sections 2 and 3:

“Whereas E, B describe a field in terms of forces the field can exert on charged
matter, ¢ and A describe the same field in terms of energies and momenta
that the entire field makes available to the matter” [6].

Section IV covers results for a closed system, with consideration of how eval-
uating momentum storage in the fields can help in visualizing the underlying
physics. Section IV concludes with a discussion of relativistic considerations,
emphasizing how the contribution of each term of E(r) = —V¢(r) — 0A(r)/0t
varies throughout the trajectory. Taken as a whole we believe our efforts af-
firm and extend points made by earlier workers.

From a teaching perspective, the calculations presented in this article are
straightforward, and Mathematica notebooks to calculate and plot the results
are available to freely use and modify [14]. The coding is fairly basic, and
an undergraduate student with solid programming skills could develop their
own similar models in any high level programming language or math package.
The integrations and trajectory calculations in sections 3 and 4 would be
difficult if not impossible without computer modeling, demonstrating the
effectiveness of this approach to students. Finally, we believe that exposing
students to different approaches to understanding the same physical situation
can facilitate comprehension.

14
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