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Building Home Plate: Field of Dreams or Reality? 

MICHAEL J. BRADLEY 
Merrimack College 

North Andover, MA 01845 

In the movie Field of Dreams, Kevin Costner's character, Ray Kinsella, considers 
building a baseball park in the middle of his cornfield. "If you build it, they will 
come," encourages a voice from the past. As an assistant coach for my nine-year-old 
son's baseball team, I was interested to read in the official league rules the following 
specifications for home plate: 

"Home base shall be marked by a five-sided slab of whitened rubber. It 
shall be a 12-inch square with two of the corners filled in so that one edge 
is 17 inches long, two are 8 1/2 inches and two are 12 inches." ([1], 
p. 160) 

An accompanying diagram shows the finished product: 
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FIGURE 1 

Pondering these instructions, I wondered not whether we should build it, but 
whether we cotuld build it. Is such a home plate possible? 

The "correct" answer is "No." The figure implies the existence of a right isosceles 
triangle with sides 12, 12 and 17. But (12,12,17) is not (quite) a Pythagorean triple: 
122 + 122 = 288; 172 = 289. Thus, these specifications seem to give new meaning to a 
"Field of Dreams." 
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On the other hand, if one interprets the values 12 and 17 as measured numbers, 
accurate to two significant digits, then home plate can be built, since, to that degree 
of accuracy, (12,12,17) is a Pythagorean triple. 

We can build it! Let them come. 
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The Pythagorean Proposition: A Proof 
by Means of Calculus 

MIKE STARING 
Hogeschool Katholieke Leergangen 
5022 DN Tilburg, The Netherlands 

E. S. Loomis, in [1], argues that there can be no trigonometric proof nor any proof 
based on analytical geometry or calculus for the Pythagorean proposition because each 
of these subjects "accepts the truth of geometry as established, and therefore 
furnishes no new proof." His argument seems valid in so far as functions of two (or 
more) variables are involved in such a 'proof.' Since calculus of one variable can be 
developed without using the Pythagorean theorem, circular reasoning may be avoided. 
The following is a proof of the proposition using calculus. 

Let ABC be a triangle with its right angle at A. Keep AB fixed and let AB = b. 
Denote AC by the variable x, so that BC is a function of x, f(x). See FIGURE 1. If 
AC increases by an amount A x, then BC will increase by Af. From similar triangles, 

Jf S> CP CA= x 
Ax CD >CD CB f(x) 
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FIGURE 1 
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