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Using Complex Orthogonal Decomposition to 

Extract Dispersion Relationships for Mass Chain 

Nicholas A. Valente 

Dr. Rickey A. Caldwell Jr. 

 

Abstract 

Complex orthogonal decomposition (COD) was used to determine the extracted          

dispersion relationship of a traveling wave in a mass chain. When COD extracts a wavenumber               

it will produce M values for each wavenumber, ​γ​i​, and N values for each frequency, ​ω​i​; where M                  

is the number of masses and N is the number of time samples. In this work, least squares and a                    

simple mean of the M- ​γ​i​’s and N-​ω​i​’s extracted values were used to determine each ​γ​i ​and ​ω​i​,                 

respectively. An analytical dispersion relationship for the mass-chain is derived in addition to an              

approximate dispersion relationship. The approximate derivation was found using         

Lindstedt-Poincare’s perturbation method. Lastly, the effects of the sampling rate on parameter´            

extraction was studied. COD could accurately extract the wavenumber and frequency of a             

traveling wave in the mass chain. Using a simple mean provided marginally better results than               

that of least squares. Sampling at the Nyquist criterion gave accurate results which improved              

both marginally and asymptotically as the sampling rate increased. 

Keywords: ​Complex Orthogonal Decomposition, dispersion relationships, mass chain 

 

Nomenclature 

i Number of mass elements 

x Spatial Coordinate 

t Time (s) 

u Nondimensionalized spatial coordinate 

k Spring stiffness (N/m) 

h Relaxed length of each spring (m) 

γ Wavenumber (rad/m) 

ω Frequency (rad/s) 
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α There are two arguments for each entry of the nomenclature environment, the symbol             

and the definition 

ε Perturbation parameter 

 

Introduction 

Proper orthogonal decomposition (POD) was formulated by several researchers in the           

mid-twentieth century [1–3], and has many applications in engineering including the field of             

vibrations [4–6]. Within the field of structural vibrations POD has been used to estimate modal               

parameters with respect to standing waves. Complex orthogonal decomposition (COD) [7] is a             

specialized form of POD. COD [7] has been applied to traveling waves in elastic media [8] and                 

in bio-locomotion [9–11] . 

In the application of COD the practitioner typically starts with an ensemble of measured              

displacements. Then this matrix is converted into an ensemble of analytic signals using the              

Hilbert Transform. Next, the correlation matrix is computed from the ensemble matrix, and the              

eigenvectors and eigenvalues of the correlation matrix are determined. The eigenvectors of the             

correlation matrix are used to extract the corresponding wavenumbers. The eigenvectors and the             

ensemble matrix are used to compute the complex modal coordinates ​q​i ​which are used to               

estimate frequencies. 

The relationship between frequencies and wavenumbers is called the dispersion relations           

[12]. Two other properties, phase velocity and group velocity, can be computed from the              

dispersion relationship. In this body of work, the wavenumbers and frequencies are extracted             

from a simulated mass-chain of 250 masses. The first mass had initial conditions             x1 (0) = x (0)  

and which created a traveling wave propagating towards the 250th mass. The x1̇ (0) = 1             

resulting displacements of each mass was captured before the wave reflection reached the 100th              

mass. To find an analytical dispersion relationship, an ordinary differential equation for the ​i​th              

mass was derived following [13] for linear springs only. The partial differential form of the               

equation is computed by taking the continuum limit of the ODE. The analytical form of the                

dispersion relationship is determined by substituting a solution of the wave equation into the              

PDE. The trial solution resulted in a converging power series. Applying    y (x, )t = ei(γx−ωt)        
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Lindstedt-Poincairé’s perturbation method to the ODE resulted in a linear approximation of the             

dispersion relationship that was identical to [14]. 

The COD extracted wavenumbers and frequencies were compared to both derived           

dispersion relationships. When applying least squares to estimate wavenumbers and frequencies           

using the dispersion relationship series, 

,  ω =  √ ∑
∞

n=1
2n!

2(−1) γn+1 2n
 

to ​n ​= 6 as the actual value, the residual sum of squares error (RSSE) was 0.0655 and for using                    

the means for parameter estimation the RSSE was 0.0088. 

The paper contributes to the body of knowledge by finding an analytical dispersion             

relationship for a linear mass chain, quantifying the effects of temporal sampling on error and               

independently verifying findings in the literature. 

 

Mathematics 

The governing equation for a 250 mass-spring chain was derived from first principles.             

Physics for the ​i​th ​mass is governed by the spring and the mass of its nearest neighbors, as shown                   

in Fig 1. Assuming each spring is: a linear ideal spring, has a stiffness of , massless                 k = 1 ( m
N )   

and is governed by Hooke’s Law. Each mass , has a mass of and is restricted to movement on        xi            

the x-axis. Applying Newton’s Second Law, the equation of motion for the ​i​th ​element is 

x x x kxm ï = k i+1 + k i−1 − 2 i  (1) 

 

An equation describing the continuum of coupled conservative oscillators was used to begin the              

process 

 

Fig. 1.  Linear Mass Chain 
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of developing a dispersion relationship equation. The expression that appears in Eqn. (2) is the               

linear equation of Eqn. (1), where ​u ​describes the displacement of the ​i​th ​mass for the dynamical                 

system. 

u
∂t2
∂ u2

i = ui+1 + ui−1 − 2 i  (2) 

 

The passing of the continuum limit occurs when ordinary differential equations are replaced by              

partial differential equations. In doing so, the displacement of each mass can then be              

approximated utilizing a Taylor Series expansion. Express ​u ​in terms of both the spatial              

parameter ​x ​and time ​t​; such that, and noting that       uui (t) = u (x , )i t ,  i+1 (t) = u (x , )i+1 t ,     

 [13]. Expanding these using the Taylor series to the fourth order yields:xi+1 − xi = h  

 

ui+1 = ui + ∂x
∂u h

1! + ∂x2
∂ u2

2!
h2

+ ∂x3
∂ u3

3!
h3

+ ∂x4
∂ u4

4!
h4

+ O (h)  
 

(3) 

ui−1 = ui − ∂x
∂u h

1! + ∂x2
∂ u2

2!
h2

− ∂x3
∂ u3

3!
h3

+ ∂x4
∂ u4

4!
h4

+ O (h)   

 

where ​h ​is defined as the relaxed length of each spring. Substituting both equations of Eqn. (3)                 

into Eqn. (2), while creating a new variable ​and applying the chain rule leads to the         x/hx̃ =           

following partial differential equation (note the tildes were omitted): 

 

∂t2
∂ u2

i = 2 ∑
∞

n=1
∂x2n
∂ u2n 1

2n!  (4) 

 

From Eqn. (4), a trial solution Eqn. (5), which satisfies the wave equation, can be used to derive 

an equation for the dispersion relationship. 

 

u (x, )t = ei(γx−ωt)  (5) 

 

 

 

This results in the expression of frequency ω in terms of wavenumber γ 
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,  ω =  √ ∑
∞

n=1
2n!

2(−1) γn+1 2n
 (6) 

 

Dispersion Relationship Linstedt-Poincaré 

Perturbation theory is used to solve equations that describe varying dynamical systems.            

Notably, Linstedt-Poincaré’s method is used to solve systems that have periodic solutions. The             

higher expansion´ of the computed solution tend to produce secular terms or terms that grow               

without bounds. Taking the simplified equation for the mass chain, Eqn. (2), and rewriting it to                

form an ordinary differential equation becomes 

 

u
dt2
d u2

i = ui+1 + ui−1 − 2 i  (7) 

 

The expanded power series ω is expressed in terms of both ε and α, where values of ε are                   

assumed to be small in magnitude and values for α are to be solved. 

 

ε εω = 1 + α1 + α2
2 + O (ε)  (8) 

 

Differentiating the linear relationship ​twice and instituting a change of variables into     ωtτ =           

Eqn. (7) leads to 

 

ω u
dτ2
d u2

i 2 = ui+1 + ui−1 − 2 i  (9) 

 

The individual components that consist within the difference equation with respect to ​t ​are              

defined as 

 

u u (ε)ui (t) = ui,0 + ε i,1 + ε2
i,2 + O  (10) 

u uui+1 (t) = ui+1,0 + ε i+1,1 + ε2
i+1,2 + O (ε)   

u uui−1 (t) = ui−1,0 + ε i−1,1 + ε2
i−1,2 + O (ε)   
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Squaring Eqn. (8) and substituting Eqn. (10) into Eqn. (9) yields equations that can be grouped in 

sequential levels of magnitude with respect to ε 

 

uε0 : üi,0 = ui+1,0 + ui−1,0 − 2 i,0  (11) 

u α uε1 : üi,1 = ui+1,1 + ui−1,1 − 2 i,1 − 2 1 ¨ i,0   

u α u α u uε2 : üi,2 = ui+1,2 + ui−1,2 − 2 i,2 − 2 1 ¨ i,1 − 2 2 ¨ i,0 − α2
1 ¨ i,0   

 

Taking the first order approximation with respect to ε and inputting the trial solution Eqn. (5) for                 

 while defining  ​will result in a dispersion relationship for ω in terms of γ.ui,0 Aeui±1 = e±iγ i(γx−ωt)  

 

 ω =  √2 (1 os γ )− cos c  (12) 

 

This is compared to the analytical dispersion relationship extracted using Eqn. (6). This results              

are shown in Fig 2. 

 

 

Fig. 2. Comparison of analytical dispersion relations. The dashed black line was computed using              

the ε equation from the Lindstedt-Poincaré perturbation. The square was computed from the 4th              

order approximation´ using equation 6 and the circle was computed from the 6th order              

approximation. 
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Fig. 3. The displacement time histories are shown for masses 1, 50, 100, and 250. The reflection                 

of the traveling wave can be seen returning to mass 100 around t = 400. 

 

 

Fig. 4. The displacement of selected masses 1, 50, 100, 250 
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Fig. 5. Complex orthogonal values (COV) for the first 100 masses 

 

Simulations 

A 250 mass chain consisting of ideal linear springs was excited using initial condition              

and . The deflection of each mass was simulated using MATLAB ​lsim(0) 0x1 =   ẋ1 (0) = 1            

command. The responses were captured until the traveling wave reflection reached the 100th             

mass as shown in Fig 3, which took approximately 400 seconds. The response for ​t ​∈ ​[0​, ​400]                  

was captured and used for extraction purposes, which is shown in Fig 4. 

 

Complex Orthogonal Decomposition 

The displacement measurements of the first 100 masses were used to form an ensemble              

matrix ​X​, where ​X is an ​M ​by ​N ​matrix consisting of real elements. The constants ​M ​and ​N ​are                    

defined by the number of masses in the system and the number of samples respectively.               

Performing the Hilbert Transform on each column of ​X​, creates a signal that is both analytic and                 

complex, meaning that the signal does not have negative frequency content. The new analytic              

ensemble of displacements is . Using the complex ensemble matrix , a   H(X) Z =       Z ∈ C M×N   

complex correlation matrix R is formed by computing 

 

R = N
ZZH

 (13) 
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where H is the complex conjugate transpose also known as the Hermitian transpose. Following              

the calculation of R, the eigenvalue problem is posed as 

 

ψ ψR = λ  (14) 

 

The eigenvalues, λ, are called complex orthogonal values (COV) and the eigenvectors, ψ, are              

denoted as the complex orthogonal modes (COM) [7]. Figure 5 displays the COVs for the first                

100 eigenvectors. COVs are used to discern spurious eigenvectors from ones suitable for             

parameter extraction. The higher magnitude COVs have smooth circular COMs associated with            

them, and as magnitude decreases the COM becomes more jagged and angular. This can been               

seen in Fig 6. It can be seen in Fig. 5 that the 60th eigenvector and higher are suitable for                    

parameter extraction [7,14]. 

 

 

Fig. 6. Example of COM’s with a Low Magnitude COV (Blue) and High Magnitude COV              

(Orange)  
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Fig. 7. Dispersion Relationship for Least Squares Approximation, Mean of a Range, Method of 

Multiple Scales, and 6​th​ Order Lindstedt-Poincaré 

 

Having identified the eigenvectors to choose, a wavenumber from each eigenvector can            

be extracted. The, wavenumber γ​i ​is extracted using . Complex modal coordinates ​Q         γi = ∂x
∂∠(ψ )i      

can be found by . Hence, the values for frequency are then found by .     Ψ XQ =  −1           ωi = ∂t
∂∠(q )i  

Figure 7 is the dispersion relationship used by taking the means of all data point produced by                 

COD. It can be seen that this does not provide a good fit to the theoretical curve. This is due to                     

some of the data being produced when the wave has not yet reached the mass or has passed the                   

mass. This can be seen in Fig 8 where the data is extracted from the part of the phase that has a                      

slope. Using this range, it can be said that these values agree well with the theoretical dispersion                 

relationship, as shown by the black squares that appear in Fig 7. Parameter estimations from the                

COD extracted values will be explored in greater details in the next section. 

 

Parameter Estimation 

To explore increasing the accuracy of the dispersion relationship estimations, two           

methods were investigated: Least Squares and simple mean. Figure 8 displays the phase angle              

that comes as a result of unwrapping the complex modal coordinates ​Q​. For each γ​i​, COD will                 

provide ​M ​extracted data points and for ω​i ​up to ​N ​data points. The least squares method was to                   

fix data from the unwrapped phase to ​phase ​(​x ​) = γ​x ​for estimate 
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Fig. 8. Phase Angle Magnitudes of Selected Complex Modal Coordinates 

 

Tab. 1. RSSE vs Sampling Frequency 

Frequency (Hz) RSSE Means RSSE Least 

Squares 

10 0.0088 0.0655 

25 0.0092 0.0402 

50 0.0096 0.0405 

100 0.0103 0.0309 

150 0.0103 0.0360 

200 0.0106 0.0309 

 

the wavenumber and ​phase ​(​t​) = ω​t ​to estimate the frequency. In addition to the parameter               

estimation using Least Squares, the wavenumbers and frequencies were estimated by taking the             

mean of the partial derivatives of the phase angle with respect to time and the spatial variable ​x​,                  

respectively. This resulted in the formation of a second dispersion relationship extraction. Figure             

7 shows the dispersion relationships using the means of all data extracted by COD (green), mean                

of portion of the data when the traveling wave is present (black), and the least squares of the                  

selected data. When using the residual sum square error (RSSE) as a metric both the means and                 

the least squares dispersion relationship have small error. The RSSE values for each parameter              
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estimation method is shown in Tab 1. Additionally, the sampling rate was increase to see if it had                  

an effect on accuracy. The parameter estimation using COD is insensitive to temporal sampling              

as seen in Fig 9. 

 

Discussion and Results 

The goal of this research was to apply the complex orthogonal decomposition method to              

a simulated mass-chain and extract the wavenumber in conjunction with frequencies of traveling             

wave propagating in the mass-chain. To evaluate accuracy of the parameter extractions, the             

dispersion relationship for the mass-chain was determined and used as a metric. 

To determine the dispersion relationship, a discrete lumped-mass model was created for            

the ​i ​th ​mass, which was an ODE. This was converted to a continuous PDE by passing the                 

continuum limit.  

 

Fig. 9. Residual Sum Square Error (RSSE) versus Sampling Frequency (Hz) for Range of Means 

and Least S quares Parameter Extraction 

 

A solution to the wave equation, , was substituted in the PDE which lead to the      (x, ) ey t =  i(γx−ωt)           

dispersion relationship in the form of a power series where, . This is a           ω =  √ ∑
∞

n=1
2n!

2(−1) γn+1 2n
    

contribution to the body of research conducted. Additionally, another form of the dispersion             
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relationship was formed by using Linstedt-Poincaré’s perturbation method, resulting in an           

approximation  

, which agrees with findings in literature. ω =  √2(1 os γ )− cos c  

Upon applying COD to the simulated responses of the masses in the mass-chain, the              

practitioner will have ​M ​extractions of each wavenumber and ​N ​extractions for each frequency.              

Typically, the mean of these extractions are used for the final parameter estimation. This work               

compared the results of using least squares or merely taking the means. The results for both were                 

accurate, the RSSE for least square was 0.066 and 0.009 when taking the means. It can be seen                  

that taking means was better and this is due to the occasional outlier when using least squares                 

which can be seen in Fig 7. Also, when exploring how sensitive COD is to the sampling rate, it                   

was determined that COD is insensitive to sampling and the RSSE converges asymptotically as              

∆​t ​decreases. Phase velocity and group velocity were determined as additional characteristics of             

the structure. Group velocity is velocity of overall packet of waves and is determined by               cg = ∂γ
∂ω  

for the linear mass chain that is 

cg = in γ √2 sin s
2√1−cos os γ c

 (15) 

 

Phase velocity is the velocity of a crest in the travel traveling wave and is defined as for                  cp = γ
ω   

the mass chain it is 

 

cp = γ
√2−2 os γ cos c  (16) 

 

Perturbation methods gave an approximate solution in the neighborhood of the dynamical            

system. The dispersion relationship that came as a result of this approximate solution, was              

compared to [14]. 

The dispersion relationships were plotted to give a visual as to how the COD model compared to                 

the analytic theory while, alternative methods of parameter extraction were also explored. 

As aforementioned, COD has been applied as tool to deconstruct the bio-locomotion of             

nematodes and fishes [9–11]. New applications of COD include sensors for nondestructive            

evaluation. Additionally, mass-chains or meta-material structures could be embedded into          
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products to differentiate genuine products from counterfeits. Verification can be determined by a             

device, which utilizes COD and travelling waves as a measure of authentication. Finally, one              

could exploit dispersion relationships of mass chains to create physical keys or encryption             

devices. 

Further investigations of this work include: adding a nonlinear element to each spring and              

allocating specific spring stiffness for wave-guide design. 
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