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Knots in the canonical book representation
of complete graphs

Dana Rowland and Andrea Politano

(Communicated by Joel Foisy)

We describe which knots can be obtained as cycles in the canonical book rep-
resentation of the complete graph Kn , and we conjecture that the canonical
book representation of Kn attains the least possible number of knotted cycles
for any embedding of Kn . The canonical book representation of Kn contains
a Hamiltonian cycle that is a composite knot if and only if n ≥ 12. When p
and q are relatively prime, the (p, q) torus knot is a Hamiltonian cycle in the
canonical book representation of K2p+q . For each knotted Hamiltonian cycle α
in the canonical book representation of Kn , there are at least 2k

(n+k
k

)
Hamiltonian

cycles that are ambient isotopic to α in the canonical book representation of Kn+k .
Finally, we list the number and type of all nontrivial knots that occur as cycles in
the canonical book representation of Kn for n ≤ 11.

1. Introduction

In Kn , the complete graph on n vertices, every pair of distinct vertices is joined by
an edge. An embedding or spatial representation of Kn is a particular way of joining
the n vertices in three-dimensional space. Conway and Gordon [1983] proved that
every spatial representation of K6 contains at least one pair of linked triangles and
every spatial representation of K7 contains at least one knotted Hamiltonian cycle.
They included examples of embeddings of K6 and K7 that were minimally linked
or knotted — their embedding of K6 contained exactly one pair of linked triangles
and their embedding of K7 contained exactly one knotted Hamiltonian cycle.

Otsuki [1996] introduced a family of spatial representations of Kn that generalized
these examples of Conway and Gordon. Otsuki’s spatial representation of Kn is
an example of a book representation. Projections of book representations prevent
complicated interactions between edges. In particular,
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• no edge crosses itself;

• a pair of edges cross at most once;

• if edge e1 crosses over edge e2 and edge e2 crosses over edge e3, then edge e1

crosses over edge e3.

Because book representations minimize the entanglement among the edges in a
graph, they are good candidates for minimizing the linking and knotting in an
embedding of a graph.

Otsuki called his family of embeddings the canonical book representations of Kn ,
which in this paper we denote by K̃n . He showed that any subcollection of m vertices
of K̃n induces a subgraph that is ambient isotopic to K̃m . Note this implies that, for
n ≥ 6, K̃n contains exactly

(n
6

)
linked triangles, all of which are ambient isotopic to

the Hopf link, and for n ≥ 7, K̃n contains exactly
(n

7

)
knotted 7-cycles, all of which

are trefoil knots. Since Conway and Gordon’s theorem implies that any spatial
embedding of Kn contains at least

(n
6

)
linked triangles and at least

(n
7

)
nontrivially

knotted 7-cycles, a canonical book representation is minimally linked and knotted
in this sense.

In addition, Fleming and Mellor [2009] proved that a canonical book represen-
tation of Kn attains 14

(n
7

)
triangle-square links, and showed this is the minimum

possible for any embedding of Kn . They also conjectured that for any graph G
there is some book representation that realizes the minimal number of nontrivial
links possible in an embedding of G.

Similarly, the canonical book representation K̃n is a candidate for the minimal
number of knotted cycles in an embedding.

In this paper, we focus on which knots arise as knotted Hamiltonian cycles in
the canonical book representation for n > 7. In Section 2 we review the definitions
of book representations and Otsuki’s canonical book representation, and show how
knotted cycles in K̃n are related to knotted cycles in K̃n+1. In Section 3 we show
that K̃n contains a (p, q) torus knot (or link) when n ≥ q+2p. In Section 4 we
examine composite knots in the canonical book representation, and in Section 5 we
give a listing of all the knots that appear as cycles in K̃n for 8 ≤ n ≤ 11 and we
conjecture about the ways in which K̃n may achieve the minimal possible knotting
complexity.

2. The canonical book representation of Kn

In this section, we review the right canonical book representation, as defined in
[Otsuki 1996]. (In the right canonical book representation, the knotted 7-cycles
are right-handed trefoil knots. The left canonical book representation is the mirror
image of the one presented here.)
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Definition 1. A k-book is a subset of R3 consisting of a line L and distinct half-
planes S1, S2, . . . , Sk with boundary L . The line L forms the spine of the book and
the half-planes Si form the pages, or sheets. We denote a k-book by Bk . Let G be a
graph, and let f : G→ Bk ⊂R3 be a tame embedding of G. We say that the spatial
representation f (G) is a k-book representation of G if:

(1) each vertex of f (G) is on the line L;

(2) each edge of f (G) is contained in exactly one sheet Si .

If G̃ is a k-book representation of G, then G̃ can be deformed by an ambient
isotopy so that the vertices lie on a circle C and the edges are chords on k internally
disjoint topological disks, all of which have C as their boundary. For the remainder
of this paper, we will treat the sheets Si for 1 ≤ i ≤ k as topological disks. In a
projection of the embedding onto the plane containing C , we assume that the sheets
are labeled so that sheet Si is “above” sheet S j if i < j . A k-book embedding is
determined, up to ambient isotopy, by specifying which edges are in which sheet.

The sheet-number of a graph G is the smallest possible k for which G has a
k-book representation.

For Kn , the sheet-number is dn/2e, the smallest integer greater than or equal
to n/2; see [Bernhart and Kainen 1979] or [Kobayashi 1992] for proofs. Otsuki’s
right canonical book representation, K̃n , provides an example of a minimal-sheet
book embedding of Kn [Otsuki 1996].

To describe K̃n , it suffices to list which sheet contains each edge. Label the n
vertices with the integers 1 through n.

Case 1: The number of vertices is even. When n = 2m, there are m sheets and
each of the sheets S1, S2, . . . , Sm contains 2m−1 edges. Sheet Si contains the edges
joining vertex i to vertex i+ j , for 1≤ j ≤m, and the edges joining vertex i+m to
(i+m+ j)mod 2m, for 1≤ j ≤ m−1. See Figure 1.

i

i-1

i+1

i+2

i+m

i+m-1

i+m+1

i+m+2

Figure 1. Sheet Si in the canonical book representation of K2m .
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i

i-1

i+1

i+2

i+m

i+m-1

i+m+1

i+m+2

1

2

2m+1

2m

m+1 m

m+2

m+3

Figure 2. Sheets Si (i ≤ m) and Sm+1 in the canonical book rep-
resentation of K2m+1.

Alternatively, if we are given an edge joining vertex i to vertex j , we can
determine which sheet the edge is in:

Lemma 2. Let n = 2m and let (i, j), with i < j , be the edge joining vertices i
and j in the projection of K̃n . Then we can determine which sheet contains (i, j):

• If i ≤ m and j−i ≤ m, then (i, j) is in Si .

• If i ≤ m and j−i ≥ m+1, then (i, j) is in S j−m .

• If i ≥ m+1, then (i, j) is in Si−m .

Furthermore, suppose the edge (i, j) crosses the edge (k, l) in the projection. We
may assume without loss of generality that 1 ≤ i < k < j < l ≤ 2m. Then edge
(k, l) is on top of edge (i, j) if and only if i ≤ m and k ≥ m+1.

Case 2: The number of vertices is odd. When n = 2m+1, the sheets S1, S2, . . . ,
Sm each contain 2m edges and sheet Sm+1 is a “half-sheet” containing m edges. For
each 1≤ i ≤ m, sheet Si contains the edges joining vertex i to vertex i+ j , and the
edges joining vertex i+m+1 to (i+m+ j+1)mod (2m+1), for 1≤ j ≤m. Sheet
Sm+1 contains the edges joining vertex m+1 to vertex m+1+ j , for 1 ≤ j ≤ m.
See Figure 2.

If we are given an edge joining vertex i to vertex j , we can determine which
sheet the edge is in:

Lemma 3. Let n = 2m+1, and let (i, j), with i < j , be the edge joining vertices i
and j in the projection of K̃n . Then we can determine which sheet contains (i, j).

• If i ≤ m+1 and j−i ≤ m+1, then the edge is in Si .

• If i ≤ m+1 and j−i ≥ m+2, then the edge is in S j−m−1.

• If i ≥ m+2, then the edge is in Si−m−1.
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Furthermore, suppose the edge (i, j) crosses the edge (k, l) in the projection. We
may assume without loss of generality that 1≤ i < k < j < l ≤ 2m+1. Then edge
(k, l) is on top of edge (i, j) if and only if i ≤ m+1 and k ≥ m+2.

Otsuki [1996] proved that the canonical book representation has the property
that any subgraph induced by a subcollection of vertices is ambient isotopic to a
canonical book representation. In particular, we have the following:

Proposition 4. Let α= (α1, α2, . . . , αn) be an n-cycle through the vertices 1, . . . , n
in K̃N . Then the n-cycle (α1, α2, . . . , αn) through the vertices 1, . . . , n in K̃N+1 is
ambient isotopic to α.

Proof. Let (i, j) and (k, l) be edges of the cycle α in K̃N , labeled so that i < j ,
k < l, and i < k. Two edges cross in the projection of K̃N if and only if they cross
in the projection of K̃N+1, which occurs if and only if i < k < j < l.

First, consider the case N = 2m+1. We can use Lemmas 2 and 3 to verify that:

(1) If i < k ≤ m+1 or if m+2≤ i < k, then (i, j) crosses over (k, l) in both K̃N

and K̃N+1.

(2) If i ≤m+1 and k ≥m+2, then (k, l) crosses over (i, j) in both K̃N and K̃N+1.

Since there are no crossing changes between edges, the cycle (α1, α2, . . . , αn)

represents the same knot in both K̃2m+1 and K̃2m+2.
Now suppose that N = 2m. Using Lemmas 2 and 3 we observe that:

(1) If i < k ≤m or if m+2≤ i < k, then (i, j) crosses over (k, l) in both K̃N and
K̃N+1.

(2) If i ≤ m and k ≥ m+2, then (k, l) crosses over (i, j) in both K̃N and K̃N+1.

(3) If i =m+1 or if k =m+1 then a crossing change occurs between edges (i, j)
and (k, l) when moving from K̃N to K̃N+1.

Notice that if i = m+1 (or k = m+1), then (i, j) (or, respectively, (k, l)) is in
the top sheet in K̃N and the bottom sheet in K̃N+1. An edge in the bottom sheet
of K̃N+1 is under all other edges and can be moved by an ambient isotopy so that it
lies over all other edges. Thus, the only crossing changes that occur do not change
the knot type, and the cycle (α1, α2, . . . , αn) represents the same knot in both K̃2m

and K̃2m+1. �

We also know that, if a Hamiltonian cycle with a certain knot type appears in K̃n ,
then K̃N must contain a Hamiltonian cycle with the same knot type for any N > n.
The following theorem indicates one way to find such a cycle:

Theorem 5. Let α = (α1, α2, . . . , αn) denote an n-cycle through all the vertices
1, 2, . . . , n+1 except i+1 in K̃n+1. Suppose that αk = i and αk+1 = j . Then the
Hamiltonian cycle (α1, . . . , αk, i+1, αk+1, . . . , αn) is ambient isotopic to α.
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Proof. It suffices to check that in K̃n any edge (i, j) is at most one sheet apart
from the edge (i+1, j). This will guarantee that the edge (i, j) can be moved to
the path (i, i+1, j) by an ambient isotopy, since if the edge (i+1, j) is one sheet
level above or one below the edge (i, j) then the path (i, i+1, j) crosses the same
edges as the edge (i, j) and in the same manner. In other words, no edge can pass
through the triangle formed by the cycle (i, i+1, j). Note that the top and bottom
sheets can also be considered consecutive, since an edge on the bottom sheet can
be deformed by ambient isotopy to be on top of all the sheets, and vice versa.

We will verify that edges (i, j) and (i+1, j) are at most one sheet apart when
i < j . The proof for when i > j is similar, and is left to the reader. There are six
cases to check.

Case 1: i ≥ m+1 and there are an even number of vertices. Refer to Lemma 2.
The edge (i, j) is in Si−m . The edge (i+1, j) is in Si+1−m . Therefore, the edges
are in consecutive sheets.

Case 2: i ≥ m+2 and there are an odd number of vertices. Refer to Lemma 3.
The edge (i, j) is in Si−m−1. The edge (i+1, j) is in Si+1−m−1 which equals Si−m .
Therefore, the edges are in consecutive sheets.

Case 3: i ≤ m, j− i ≤ m and there are an even number of vertices. Refer to
Lemma 2. The edge (i, j) is in Si . There are two possibilities for the sheet level of
the edge (i+1, j). First, if i < m, then i+1≤ m, and

j−(i+1)= j−i−1≤ m−1≤ m.

Therefore, edge (i+1, j) is in Si+1. Second, if i = m, then i+1≥ m+1 so edge
(i+1, j) is in Si+1−m = Sm+1−m = S1. This would not change the knot type because
the edge (i, j) was in the very last sheet and this edge is in the very first sheet. In
both cases, the edges are in consecutive sheets.

Case 4: i ≤ m+1, j−i ≤ m+1 and there are an odd number of vertices. Refer
to Lemma 3. The edge (i, j) is in Si . Again, there are two possibilities for the
sheet level of edge (i +1, j). First, if i < m+1, then i +1 ≤ m+1, and so
j−(i+1)= j−i−1≤ m ≤ m+1 meaning this edge is found in Si+1. This is one
sheet level below the original edge. Second, if i = m+1, then i+1≥ m+2. The
edge (i+1, j) is therefore in Si+1−m−1 = Sm+1+1−m−1 = S1, the very first sheet.
As in case 3, this means that the knot type remains unchanged.

Case 5: i ≤ m, j−i ≥ m+1 and there are an even number of vertices. Refer to
Lemma 2. The edge (i, j) is in S j−m . Note that, if i = m, then j ≥ 2m+1, which
is impossible, since there are only 2m vertices. That leaves two possibilities for the
sheet level of edge (i+1, j). First, if i < m and j > i+m+1, then i+1≤ m and
j−(i+1)≥m+1. This forces the edge to be in S j−m , and so both edges are in the
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same sheet. Second, if i < m and j = i+m+1, then i+1≤ m and j−(i+1)= m.
This means the edge is in Si+1, which is equivalent to S j−m because j = i+m+1.
Again, both edges are in the same sheet.

Case 6: i ≤ m+1, j−i ≥ m+2 and there are an odd number of vertices. Refer to
Lemma 3. The edge (i, j) is in S j−m−1. Note that, if i = m+1, then j ≥ 2m+3,
which is impossible, so we can assume i <m+1. There are two possibilities for the
sheet level of edge (i+1, j). First, if i <m+1 and j > i+m+2, then i+1≤m+1
and j−(i+1) ≥ m+2. This means the edge is in S j−m−1. Second, if i < m+1
and j = i+m+2, then i+1≤ m+1 and j−(i+1)= m+1. Again, the edge is in
Si+1 = S j−m−1. Both edges are in the same sheet. �

Corollary 6. Suppose α is a Hamiltonian cycle in K̃n with the property that no
edge of α joins consecutively labeled vertices. Let N = n+k for k ≥ 0. Then K̃N

contains at least 2k
(N

k

)
Hamiltonian cycles that are ambient isotopic to α.

Proof. The subgraph induced by any n vertices of K̃N is ambient isotopic to K̃n , so
there are at least

(N
n

)
n-cycles in K̃N that are ambient isotopic to α. These cycles

share the property that no edge joins consecutive vertices. Let (α1, α2, . . . , αn)

be such an n-cycle. Choose the smallest integer j such that j = αi for some
1 ≤ i ≤ n but j+1 6= αl for any 1 ≤ l ≤ n. (Note: if j = N , we interpret j+1
as 1.) By the proof of Theorem 5, the cycles (α1, . . . , αi−1, j+1, αi , . . . , αn)

and (α1, . . . , αi , j+1, αi+1, . . . , αn) are both ambient isotopic to α. Repeat this
step until all vertices in K̃N are used. This gives 2k ways to extend each n-cycle,
which produces 2k

(N
k

)
distinct Hamiltonian cycles that are ambient isotopic to α,

as claimed. �

This immediately implies that there are at least 2N−7
(N

7

)
Hamiltonian cycles that

are trefoil knots in K̃N when N ≥ 7. This bound is not sharp, however, as shown in
the table in Section 5.

3. Torus knots in the canonical book embedding

Recall that a torus link is a knot or link that can be embedded on the standard
(unknotted) torus in R3. A (p, q) torus link can be deformed so that it crosses every
meridian (a closed curve that bounds a topological disk that is “inside” the torus)
of the torus p times and every longitude (a closed curve that bounds a topological
disk that is “outside” the torus) of the torus q times. When p and q are relatively
prime, the link is a knot. See [Adams 1994, Section 5.1] for a general description
of (p, q) torus knots and links.

A (p, q) torus knot can also be described as the closure of a braid on p strands,
with braid word (σ1σ2 · · · σp−1)

q . Recall that σi denotes that the i-th strand of the
braid crosses over the (i+1)-st strand of the braid, and equivalent braid words can
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1

2

3

4

5

6

7

8

9

σ
1

σ
1

σ
1

σ
1

σ
1

σ
1

σ
1

σ
1

−1

σ
1

−1

Figure 3. The cycle (1, 3, 5, 7, 9, 2, 4, 6, 8) in K̃9 is the knot 51.
It can be described by the braid word σ 4

1 σ
−1
1 σ 3

1 σ
−1
1 = σ

5
1 .

be obtained using the braid relations σiσi+1σi = σi+1σiσi+1 and σiσ j = σ jσi when
|i− j | ≥ 2. See [Adams 1994, Section 5.4] or [Birman 1975] for references on
braids.

Consider the Hamiltonian cycle (1, 3, 5, . . . , 2m+1, 2, 4, . . . , 2m) in K̃2m+1.
This cycle forms the closure of a 2-strand braid with 2m+1 crossings. See Figure 3.
For each i ≤ 2m−2, we know from Lemma 3 that the edge (i, i+2) crosses over
the edge (i+1, i+3) except when i = m+1. Edge (2m−1, 2m+1) crosses over
edge (2m, 1), edge (2m, 1) crosses over edge (2m+1, 2), and edge (2m+1, 2)
crosses under edge (1, 3). The resulting braid word is

σmσ−1σ (2m−2)−(m+1)σσσ−1
= σ 2m−3.

Therefore, we see that K̃2m+1 contains a (2, 2m−3) torus knot. When q is odd, K̃n

contains a (2, q) torus knot as one of its Hamiltonian cycles for all n ≥ q+4. (Note:
when q is even, the same argument shows that K̃n contains a (2, q) torus link.)

Suppose n > 6 is not a multiple of 3, and consider the Hamiltonian cycle
(1, 4, 7, . . . ) in K̃n . This cycle forms the closure of a 3-strand braid with word∏n

i=1(σ
δ1(i)
1 σ

δ2(i)
2 ) where δ1(i)= 1 if the edge (i, i+3) is over the edge (i+1, i+4)

and −1 otherwise, and δ2(i)= 1 if the edge (i, i+3) is over the edge (i+2, i+5)
and −1 otherwise. (The vertex labels are to be taken modulo n.)

Suppose n = 2m is even. (The case for when n is odd is similar, and omit-
ted.) Then Lemma 2 implies that δ1(i) = −1 if and only if i is m or n, and
δ2(i) = −1 if and only if i is one of m−1,m, n−1 or n. The braid word be-
comes

(σ1σ2)
m−2σ1σ

−1
2 σ−1

1 σ−1
2 (σ1σ2)

m−2σ1σ
−1
2 σ−1

1 σ−1
2 .
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Since the braid relations imply that

σ−1
2 σ−1

1 σ−1
2 = σ

−1
1 σ−1

2 σ−1
1 ,

we see that σ1σ
−1
2 σ−1

1 σ−1
2 σ1σ2 is the identity. Therefore the braid word can be

reduced to (σ1σ2)
n−6. This shows that K̃n contains a (3, n−6) torus knot. For any

n ≥ q+6, the spatial representation K̃n contains a (3, q) torus knot (or link, if q
is a multiple of 3).

An extension of this argument leads to the following theorem:

Theorem 7. Let p, q, and n be positive integers such that p ≤ q and n ≥ q+2p.
Then the canonical book representation of Kn contains a (p, q) torus knot (or link).

Proof. By Theorem 5, it suffices to prove this theorem when n = 2p+q . Consider
the knot or link in K̃2p+q consisting of all edges of the form (i, i+ p) for 1≤ i ≤ n,
where the vertex labels are taken modulo n. This knot or link can be described as a
braid on p strands with braid word

w =

n∏
i=1

[
σ
δ1(i)
1 σ

δ2(i)
2 · · · σ

δp−1(i)
p−1

]
,

where

δ j (i)=
{

1 if edge (i, i+ p) is over edge (i+ j, i+ j+ p),
−1 otherwise.

We will use Lemma 2 to prove the case when n is even. The case for n odd is
left to the reader.

Suppose n = 2m. By Lemma 2,

δ j (i)=


1 if 1≤ i ≤ m− j,
−1 if m− j+1≤ i ≤ m,

1 if m+1≤ i ≤ n− j,
−1 if n− j+1≤ i ≤ n,

and this allows us to express w as

w =
[
(σ1σ2 · · · σp−1)

m−p+1(σ1σ2 · · · σp−2)σ
−1
p−1

· (σ1σ2 · · · σp−3)σ
−1
p−2σ

−1
p−1 · · · σ

−1
1 σ−1

2 · · · σ
−1
p−1

]2
.

Next, observe that

(σ1σ2 · · · σp−1)(σ1σ2 · · · σp−2)σ
−1
p−1(σ1σ2 · · · σp−3)σ

−1
p−2σ

−1
p−1 · · · σ

−1
1 σ−1

2 · · · σ
−1
p−1

is equivalent to the identity. For example, when p= 4, we can use the braid relations
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Figure 4. The braid word (σ1σ2σ3)(σ1σ2σ
−1
3 )(σ1σ

−1
2 σ−1

3 ) ·

(σ−1
1 σ−1

2 σ−1
3 ) is equivalent to the identity.

to obtain

(σ1σ2σ3)(σ1σ2σ
−1
3 )(σ1σ

−1
2 σ−1

3 )(σ−1
1 σ−1

2 σ−1
3 )

= (σ1σ2σ1)(σ3σ2σ
−1
3 )(σ1σ

−1
2 σ−1

1 )(σ−1
3 σ−1

2 σ−1
3 )

= (σ2σ1σ2)(σ
−1
2 σ3σ2)(σ

−1
2 σ−1

1 σ2)(σ
−1
2 σ−1

3 σ−1
2 )

= σ2σ1σ3σ
−1
1 σ−1

3 σ−1
2

= σ2σ3σ1σ
−1
1 σ−1

3 σ−1
2

= 1.

(See Figure 4.) This implies that the braid word simplifies to

w = (σ1σ2 · · · σp−1)
2m−2p

= (σ1σ2 · · · σp−1)
q ,

so we obtain a (p, q) torus link as claimed. �

4. Composite knots in the canonical book embedding

In this section we prove that the canonical book embedding of Kn contains a
composite knot for all n ≥ 12. We also show that, if we choose any two knotted
Hamiltonian cycles contained in K̃ p and K̃q , respectively, their composite will be a
Hamiltonian cycle in K̃ p+q+1.

Theorem 8. Let n ≥ 14. Then the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 15, 16, . . . , n, 2, 4, 6)

in the canonical book representation of Kn is the composite of two trefoils.

Proof. We can find a composite knot in K̃14 by first finding trefoils in two disjoint
subgraphs. The first subgraph is induced by vertices 1 through 7. The second
subgraph is induced by vertices 8 through 14.
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Figure 5. Cycle (1, 3, 5, 7, 14, 2, 4, 6) is ambient isotopic to cycle
(1, 3, 5, 7, 2, 4, 6) since the edge (2, 7), shown as a dashed line,
can be replaced by the path (2, 14, 7).

Any set of seven vertices of K̃14 induces a graph that is ambient isotopic to
the canonical book representation of K7. In K̃7 there is exactly one trefoil knot.
Therefore, there is exactly one trefoil in each subgraph of K̃14 induced by seven
vertices. The first subgraph has a trefoil in the cycle (1, 3, 5, 7, 2, 4, 6). Notice
that this cycle is ambient isotopic to the cycle (1, 3, 5, 7, 14, 2, 4, 6) in K̃14. See
Figure 5.

These cycles are ambient isotopic because the only edges of the cycles which
intersect the path (2, 14, 7) and the edge (2, 7) are edges (1, 3) and (1, 6). Both of
these edges lie in S1 meaning that any path or edge that crosses those two edges
will fall in a lower sheet. This means that the edge (2, 7) can be replaced with the
path (2, 14, 7) without changing the knot type.

The second subgraph (induced by vertices 8 through 14) has a trefoil in the cycle

(8, 10, 12, 14, 9, 11, 13).

Notice that this cycle is ambient isotopic to the cycle

(8, 10, 12, 14, 7, 9, 11, 13).

See Figure 6.
These cycles are ambient isotopic because both the path (9, 7, 14) and the edge

(9, 14) cross edges (8, 10) and (8, 13), which are both in S1. Therefore, any edge
or path that crosses these two edges will still remain under them, meaning that the
path (9, 7, 14) can be replaced with the edge (9, 14) without affecting the knot type.

Place the two cycles on K̃14. When these two cycles are layered they share
the edge (7, 14). Removing edge (7, 14) (which is the shared edge that has no
crossings), will create the composite of the two trefoils. See Figure 7. The cycle
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Figure 6. Cycle (8, 10, 12, 14, 7, 9, 11, 13) is ambient isotopic to
cycle (8, 10, 12, 14, 9, 11, 13) since the edge (9, 14), shown as a
dashed line, can be replaced by the path (9, 7, 14).
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6

Figure 7. Composite knot in K14. The dashed line is the edge
removed from both factor knots to form the composite.

with the composite knot in K̃14 is

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 2, 4, 6).

For n > 14, the fact that the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 15, 16, . . . , n, 2, 4, 6)

in the canonical book representation of Kn is the composite of two trefoils follows
immediately from Theorem 5. �

We can improve this result by finding a composite knot in K̃13. Consider two
subgraphs of K̃13. Let the first subgraph of K̃13 be induced by vertices 1 through 7,
and let the second subgraph be induced by vertices 7 through 13. Refer to Figure 8.
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Figure 8. Composite knot in K13. On the left, the two cycles are
layered with the dashed lines representing the edges to be removed.
On the right is the composite formed by adding the bold edge
(2, 7).

Since each subgraph is ambient isotopic to K̃7, each subgraph contains exactly
one trefoil knot. The first subgraph has a trefoil knot in the cycle

(1, 3, 5, 7, 2, 4, 6).

The second subgraph has a trefoil in the cycle

(7, 9, 11, 13, 8, 10, 12).

Place these two cycles together in K̃13. Notice that 4 edges meet at vertex 7.
Connect the knots by joining edges (5, 7) and (7, 9) and replacing the path (2, 7, 12)
with the edge (2, 12). This results in the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 2, 4, 6).

Note that edge (2, 12) crosses edges (1, 3), (1, 6), (8, 13) and (11, 13). Edge (2, 12)
is in sheet five, edges (1, 3), (1, 6), and (8, 13) are in sheet one, and lastly, edge
(11, 13) is in sheet four. This means that edge (2, 12) crosses completely under
all edges. Since edges (2, 7) and (7, 12) also cross under all the edges that edge
(2, 12) crosses, replacing the path (2, 7, 12) by the edge (2, 12) forms a composite
of the two trefoil knots in K̃13.

The smallest K̃n that a composite knot can be found in is K̃12; refer to Figure 9.
To find this composite, once again we consider two subgraphs of K̃12 where the
first subgraph is induced by the first 7 vertices and the second subgraph is induced
by the last 7 vertices in the embedding of K12.
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Figure 9. Composite knot in K12. On the left, two knotted trefoils
are shown. The dashed edges are the ones that will be replaced.
On the right is a cycle which is the composite of the two trefoils.

Each subgraph contains exactly one Hamiltonian cycle that is a trefoil knot. The
first subgraph has a trefoil in the cycle

(1, 3, 5, 7, 2, 4, 6).

The second subgraph has a trefoil in the cycle

(6, 8, 10, 12, 7, 9, 11).

Place these two cycles with the trefoil knots on K12. Notice that there are 4 edges
that meet at vertex 6 and vertex 7. Removing the paths (8, 6, 11) and (2, 7, 5) and
adding edges (2, 11) and (5, 8) forms a composite knot. This cycle is

(1, 3, 5, 8, 10, 12, 7, 9, 11, 2, 4, 6).

Up to now we have shown how to find composites of trefoil knots. A similar
method can be used to find other composite knots.

Theorem 9. Let α be a Hamiltonian cycle in the canonical book representation
of K p and let β be a Hamiltonian cycle in the canonical book representation of Kq .
Then α #β is a Hamiltonian cycle in the canonical book representation of K p+q+1.

Proof. Without loss of generality, we assume that p ≤ q. Consider the subgraph
of K̃ p+q+1 induced by vertices 1 through p, and let α = (α1, α2, . . . , αp). Because
we are dealing with a book representation, we know that there exists some edge
(αi , αi+1) that is in a lower sheet than all other edges in the cycle. Change the
orientation of the cycle if necessary so that αi < αi+1. Edges (αi , p+q+1) and
(αi+1, p+q) are also in lower sheets than any of the edges of α, so the cycle
α̃ = (α1, . . . , αi , p+q+1, p+q, αi+1, αi+2, . . . , αp) is ambient isotopic to α.
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n knotted Hamiltonian cycles out of

7 1 31 knot 1

8 21 31 knots 29

9 342 31 knots 9 41 knots 1 51 knot 577

10 5090 31 knots 245 41 knots 50 51 knots 9991
20 52 knots 1 819 knot

11 74855 31 knots 5335 41 knots 1375 51 knots 165102
836 52 knots 11 61 knots 11 62 knots

1 71 knot 56 819 knot 1 10124 knot

Table 1. Knotted Hamiltonian cycles and total number of knotted
cycles (rightmost column) in the canonical book embedding of Kn ,
for n ≤ 11.

Similarly, we can find a cycle (β1, β2, . . . , βq) that is ambient isotopic to β using
vertices p+1 through p+q. We know such a cycle exists, because the subgraph
induced by any q vertices is ambient isotopic to the canonical book representation
of Kq . Suppose that β j = p+q , and that the cycle is oriented so that β j−1 < β j+1.
Using the same argument used in the proof of Theorem 5, we can extend β to an
ambient isotopic cycle β̃ = (β1, β2, . . . , β j−1, p+q+1, p+q, β j+1, . . . , βq) that
contains the edge (p+q, p+q+1).

The cycles α̃ and β̃ meet along the edge (p+q, p+q+1). The only crossing
between disjoint edges in the two cycles is a single crossing between the edges
(αi+1, p+q) and (β j−1, p+q+1). Since this crossing can be eliminated by flipping
one of the components α̃ or β̃, the cycle

(α1, . . . , αi , p+q+1, β j−1, β j−2, . . . , β1, βq , βq−1, . . . , β j+1, p+q, αi+1, . . . , αp)

is ambient isotopic to the composite knot α #β. �

5. Conclusion

In Table 1, we have identified the knotted Hamiltonian cycles and the total number
of knotted cycles in the canonical book embedding of Kn for 7 ≤ n ≤ 11. These
values were obtained using a computer program that identifies knots from their
Dowker–Thistlethwaite code [Toth and Walton 2010].

The values in column 3 of Table 1 are a consequence of the following:

Proposition 10. Let f (n) be the number of knotted Hamiltonian cycles in the
canonical book representation of Kn . Then the total number of knotted cycles in K̃n
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is
n∑

j=7

(
n
j

)
f ( j).

Proof. The proof follows immediately from Otsuki’s result that any subset of vertices
induces a subgraph that is ambient isotopic to the canonical book representation. �

Hirano [2010] proved that all spatial embeddings of K8 must have at least 3
knotted Hamiltonian cycles; however, no known example achieves that bound.
Abrams and Mellor [2010, Proposition 28] proved that the minimum number of
knotted cycles in K8 must be between 15 and 29. We conjecture the following:

Conjecture 11. The canonical book representation of Kn contains the fewest total
number of knotted cycles possible in any embedding of Kn .

Conjecture 12. The canonical book representation of Kn contains the fewest num-
ber of knotted Hamiltonian cycles possible in any embedding of Kn .

Note that Conjecture 12 implies Conjecture 11. Both conjectures are true for
n ≤ 7.
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